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Abstract—An approach to control of invariant sets of quasi-
polynomial systems in the presence and absence of bounded
disturbances or bounded uncertainty in the model is proposed.
The control strategy is based on introduction of an invariant
functional for uncontrolled system and posing the control task as
achieving the desired value of the invariant functional by means
of control. The design is based on the reduction to the generalized
Lotka-Volterra system and employing the speed-gradient control
method.

Index Terms—Invariants, nonlinear control, stability

I. INTRODUCTION

Quasi-polynomial systems represent an important type of
mathematical models because a wide class of smooth nonlin-
ear systems can be represented in a quasi-polynomial form
[1], [2]. In turn, quasi-polynomial systems can be reduced
to generalized Lotka-Volterra form [3], [4] that is a well
known model for description of multispecies populations [9].
Besides, other standard modeling forms of biological or bio-
chemical interest, such as S-systems or mass-action systems,
are naturally embedded into the generalized Lotka-Volterra
form [3]. Generalized Lotka-Volterra model has been proved
useful in the analysis and control of the systems described by
a set of differential and algebraic equations. However most
of existing results are related to stabilization of equilibrium
points [2], [5], [6],

In a number of interesting applications the problem of
control of invariants arises [10], [11], [12], [13]. A feature of
control of invariants is in that the goal limit set is a manifold
rather than a point. Therefore some set stability problems
may arise. For a class of multispecies Lotka-Volterra systems
a solution for an invariant control problem based on speed-
gradient (SG)-method was proposed in [16].

In this paper an approach of [16] is extended to a class
of quasi-polynomial systems. We present a control strategy
that can improve stability and robustness of quasi-polynomial
systems in the presence and absence of bounded disturbances
or bounded uncertainty in the model. In this way, we introduce
an invariant functional and pose the control task as achieving
a desired value of the invariant functional.

Problem formulation is given in Section 2. Section 3 de-
scribes the control design. Section 4 and 5 provide formu-
lations and proofs of the closed loop system properties in
the absence and presence of bounded disturbances or bounded
uncertainty in the model respectively.

II. PROBLEM FORMULATION
A. Mathematical Model

Quasi-polynomial model is described by the following sys-
tem of differential equations
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where y € int (Ri), A e R B e R™" L, € R,
j=1,...,n. Besides L = (Lq,.. .,Ln)T. It is assumed that
rankB = n and m > n.

In [7] the authors show that the model (1) can be reduced to
the generalized Lotka-Volterra also known as classical model
of multispecies populations [8], [9]:
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where
M=B-A N=B-L, (3)

and x; is presented by

n
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Let us choose initial values of variables x;, ¢ = 1,...,m
according to initial values of variables y;, ¢ = 1,...,m and

equations (4). Then dynamics of the multispecies populations
(2) are equivalent to dynamics of the original quasi-polynomial
model (1). Since the system (2) includes the variables y;, ¢ =
1,...,n, the stability of this system implies stability of the
original system (1).



Introduce control inputs w;, | = I, +1,....m, I, > 1
in (2). The controlled model of multispecies populations
introduced in [16] is as follows:

b = zi(t) - (N+z’” xj(t)),izl,Q,...,l*

&y = xy(t) - (Nl + Zj:l Mlj:cj(t) +ul(t)) ,l=1l,...,m

)
B. Invariant Functional

Assume that there exists at least one positive equilibrium
in the uncontrolled system (2) for some values of the system
parameters:

r,=n;>0,1=1,...,m, (6)
and the quantities M;;, i # j evaluating the type and intensity
of the interaction between ¢-th and j-th variables form an
antisymmetric matrix

then the function

Zm(—l n) ®)

is an invariant of (5) for u; =0, Il =1, +1,...,m, I, >
1 [8]. Besides, Hessian matrix of Vg, (x) is positive definite
and, therefore, V,,(xz) > V,(n) for x # n. Hence V,(x)
can measure the amplitude of oscillations. Below it is used to
achieve the desired amplitude of oscillations.

Introduce the control goal as an achievement of the desired
level of the quantity Vi, (z(t)) as t —ox:

Vop = Voo, t —ox . 9)

qp?

If Vi, = Vgp(n) = min Vg, (), then the goal (9) means
achievement of the equilibrium z = n. In the case Vg ,(n) <
Vi, < Vip(2(0)) achievement of the goal (9) means decrease
of the oscillations level. If V', > V{,,(z(0)), then achievement
of the goal (9) corresponds to the growth of the oscillations
intensity. The problem is to find control function w(¢) in (5),
ensuring achievement of the control goal (9).

III. CONTROL DESIGN

Apply the speed gradient (SG) method [14] to solve the
problem. To this end introduce the so called goal function Q:

Q) = 5 (Vo) ~ Vi)

In order to achieve the goal (9), it is necessary and sufficient
that Q(z(t) converges to zero as t — oo. According to the SG
method one needs to evaluate A) derivative (speed of change)
of @) with respect to the system (5) and B) the gradient of Q
with respect to u.

Calculation of the time derivative of ) with respect to
system (5) yields:

(10)

Qz,u) = (Vgp (11)

m
§ - nl uj.
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Partial derivatives Q() with respect to u; are evaluated as

follows:

(Vap(@) = V2) (m(t) =), L=1s,...,m.
12)
According to the SG method the control action is chosen as

follows:

9 .
%Q(l‘, u) =

uy (t) =

where v, > 0,1l =1,,...,

= (Vap() = Vi) (@) — ),
m, l, > 1.

(13)

IV. CONTROL OF QUASI-POLYNOMIAL SYSTEMS IN THE
ABSENCE OF BOUNDED DISTURBANCES OR UNCERTAINTY

The first result of this section is the following statement.

Theorem 1. Assume that there exists an equilibrium in the
system (5) such that the conditions (6), (7) hold.
Then either the algorithm (13) provides the goal (9), or
the quantities of the controlled variables x; tend to their
equilibrium values n;, | =1, ..., m, [, > 1.
If the desired level Vj,, > V5, where V,,, is a minimum of the
invariant, and Vg, (x(0)) > Vo, then the control goal (9) is
achieved.

Proof.

Consider the time derivative of the goal function @ (11):

Qa,u) = =27Q > (11 —m)* < 0.

=l

(14)

Since @ does not increase, there exists a finite limit of Q(?)
as t —oc. Denote it as (). Suppose the goal (10) does not hold.
Then ) > 0. Hence Q(t) > 0 for all ¢ > 0 and

Qz,u) = —2Q Z (= m1)° (15)
Integration (15) yields
0<Q (a?(t)£U(t)) < Q(x(0),u(0)) -
—27@1727:: [ (z1(s) —ng)* ds < 0. (16)
=L. 0
Therefore
m
Z / (z1(s) — nl)2 ds <o . (17)

I=l-9

Since the integrand is nonnegative and uniformly continuous,
it converges to zero according to Barbalat Lemma [15], that
is

2 (t) = ng, t =00, I =1,... (18)

, M.



Thus either the algorithm (13) provides the control goal
(5), or a number of the controlled variables z;(t) converges to
its equilibriuvm ny, Il =1,,...,m, [, > 1.

The above assertion implies that the function V,(z) either
achieves the desired level V,, or converges to V,,(n) = V.
Therefore at x; = n;, i = 1,...,m the function Q(x) =
0.5 (Vgp(z) — V;;D)z has its minimum. Thus for all ¢ > 0
Vap (0) > Vo, Provided that Vg, (0) = V7, the system is
always in its equilibrium, i.e. to achieve the control goal for
Vi, > Vg, it is necessary Vo, (0) > V7, <

Remark. In Theorem 1 it is supposed that the system (2)
has at least one positive equilibrium for some values of its
parameters. For a nonsingular matrix composed of M;; we
always can choose values of the birth rate N; such that
(6) holds [17]. For a nonsingular matrix composed of M;;
positivity conditions depending only on M;; were found in

[8].

V. CONTROL OF QUASI-POLYNOMIAL SYSTEMS IN THE
PRESENCE OF BOUNDED DISTURBANCES OR UNCERTAINTY

A. Control of nonlinear systems in the presence of bounded
disturbances or uncertainty

Consider the nonlinear system

{ &= f(x) + g(x)u+n,
y = h(x)

where © € X C R" is a vector of state variables, v € U C R™
is a vector of control actions, y € RP is an output vector. The
vector 77 € R™ characterizes disturbances or uncertainty of the
system (19). X,U are open sets in the space of dimension
n and m accordingly; g is a n X m matrix function; f, h are
smooth vector functions of dimension n and p accordingly.
Moreover, h(z) is an invariant function of (19) by u = 0.

Assume that in the system there exists an unique solution
x(t) for all £(0) € X and u € U, and this solution is defined
on [0,+00) and entirely contained in the set X.

Introduce a control goal as achieving such quantity of the
invariant h(z) that will be the closest one to the desired value
with the required accuracy:

19)

lim Q (2(t)) < Co,

t—o0

(20)

where Q = 7/2.
Apply the speed gradient (SG) method [14] to solve this
problem. As a goal function take the function Q:
u=—4V,Q = —yy"Vh". @1
The second result of this paper is the following statement.

Theorem 2. Suppose that the following conditions on the
system (19) hold:
. f, g, h e Cl.
o [In(@)I < Cy.
o L¢h(z) =0, ie. h(x) is an invariant function in (19)
by u = 0.

o There exists & > 0 such that a set Q¢ =
{z € R™: Q(x) <&} is compact.
o V€ Qe |hx)TVh(z)T|| < C.
o The minimum eigenvalue of the matrix A (z)" A (z) is
uniformly positive, where A (z) = Vh (z)" g (x):
. T
€= Xléljgn Amin (A(z)"A(z)) > 0.
Then the designed control algorithm (21) will provide the
control goal (20) with Cq =2CC,/e.
Proof.

Consider the time derivative of the goal function @) along
trajectories of (19):

Q=Li=2"VA (f+gu+n) = 22)

2yTVAT f 4+ 2yTVhT gu + 2yTVRT.

According to the first condition of Theorem 2 the first term

of (22) is 0. Denote the second and third items of (22) as
R1, Ry and estimate them:

Ry =2y"Vh'gu=y" [(Vh"g) (Vg"h)] y = y" AT Ay,
(23)
where A = VhTg. According to the fifth condition of
Theorem 2 we obtain

AT A > eI, (24)

and, therefore

Ry < ey = —eQ. (25)

According to the first and forth conditions of Theorem 2
the functions f, g, h are bounded in the compact set ()¢, and
¢ is bounded according to the second condition of Theorem
2. Therefore

Ry =2y"VhTn < CC,, (26)

where C' is a positive constant such that ||2yTVhTH <C.
Then time derivative of ()

Q< —eQ +CC,,. 27)
that implies

T Q) < 291, (28)

t—o0 €

Thus, if the system (19) has bounded disturbances or
uncertainty, the controls (21) limit the function @, although
the controls do not result in tending function @ to zero, and
the upper estimate for the function @ is (28) «



B. Quasi-Polynomial Model in the presence of bounded dis-
turbances or uncertainty

Quasi-polynomial model with bounded disturbances or un-
certainty is presented by the system

i = xi(t)- N+Z ) +ui(t) | +ni, i=1,...,N,
(29)

T . .. .
,mMn)" is a vector containing disturbances

where 7 = (1, ...
or uncertainty.

Introduce a control goal as achieving such quantity of the
invariant (8) that will be the closest one to its desired value
V,p with the required accuracy:

lim A? (z(t)) < Cy,, (30)

t—o0
where h(z) = Vg, (z) — V5.
Apply the control algorithm (13) based on the speed
gradient method to achieve the control goal (30).
The following result holds.
Theorem 3. Suppose in the system (29) the conditions hold:

In(t)] < Gy 2
o There exists 0 < & < (V;;;) such that a set Q¢ =
{z € R™: Q(z) <&} is compact.

o Vo€ Qe |hx)TVh(z)T|| < C.
o Tuke )
o=, ; (-%)

Then the algorithm (13) will provide the goal (30) with
Cy,, =2CC, /e

Proof.

Theorem 3 is a consequence of Theorem 2. Indeed, in
Theorem 3 all requirements from Theorem 2 except the sixth
one hold. We have to verify this requirement, namely that the
minimum eigenvalue of the matrix A” A is uniformly positive,
where the matrix A = \yhg”

For the system (29) functions h(z), g(z) are as follows

iy T .
h(fv):;<ni—10gni> - W 31
g(x) = (x1,...,an)" . (32)
Then
- T T
vh(x):(hlv ahN> 3 hz: _*1_,7/: N. (33)
A(x)T A(z) = g(z) v h(z)" 7 h(z)g(z)" =
N 2
> (1 - x,) diag{a?},. (34)

Therefore the eigenvalues of the matrix A(z)T A(x) are

vt E 02

Thus, all eigenvalues of the matrix A(z)T A(x) are strictly
positive. Therefore the system (29) satisfies all requirements
of Theorem 2 «

(35)

VI. CONCLUSION

An approach to control of invariant sets of quasi-polynomial
systems in the presence and absence of bounded disturbances
is proposed. The control strategy is based on introduction
of an invariant functional and posing the control task as
achieving a desired value of the invariant functional. The
design is based on the reduction to the generalized Lotka-
Volterra system control. The proposed method may improve
stability of the closed loop system and its robustness under
action of bounded disturbances or under bounded uncertainty
in the model. To implement the proposed algorithm an instant
information exchange between different agents (species) is
needed. In some cases it may be implemented based on
Distributed Ledger Technology.

Further research may be devoted to application of the
proposed algorithms to control of various biological or bio-
chemical systems and numerical examination of the designed
systems behavior. Examples of such system models can be
fount, e.g. in [1].

Another avenue of research is study of speed-gradient
algorithms for modeling of the biological evolution based on
maximum entropy principle and its dynamical speed-gradient
version [18].

The work was partly supported by RFBR grant 17-08-
01728, by the Government of Russian Federation (Grant 08-
08) and by the Distributed Ledger Technology Competence
Center of SPbSU.
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