
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Application of Paraconsistent Annotated Logic in

Prototype of Autonomous Vehicle in 1:24 Scale

Henry Costa Ungaro

Graduate Program in Production

Engineering

Paulista University

São Paulo, Brazil

henry@paradecision.com

Jair Minoro Abe

Graduate Program in Production

Engineering

Paulista University

São Paulo, Brazil

jairabe@uol.com.br

Kazumi Nakamatsu

University of Hyogo

Hyogo, Japan

nakamatu@shse.u-hyogo.ac.jp

Fábio Vieira do Amaral

Paulista University

São Paulo, Brazil
fabio@paradecision.com

Abstract — Google, Tesla, and GM are companies that

worry about creating a IA-based stand-alone vehicle. These

vehicles comprehend the world depends on the data extraction

from sensors, radars, cameras, among other devices. One detail

that must be considered is the inconsistencies, which appear to

be caused by the conditions of the environment in which the

evidence is placed. This paper applies the concepts of

Paraconsistent Annotated Evidential Et in an embedded

software environment from Arduino Uno microcontroller

board, ultrasonic sensors, DC motors, vehicle chassis available

in Arduino basic kit, in 1:24 scale. The project is to provide an

initial knowledge base that can evolve into a more complex

situation. The scope of this work is limited to the identification

of obstacles and the application of actions that avoid the

collision. As proposition: “there are no obstacles ahead”.

During the tests, the prototype easily recognized obstacles that

occur by adopting the measurements determined by the twelve

logical states.

Keywords—paraconsistent logic; paraconsistent annotated

logic; autonomous vehicle; Arduino

I. INTRODUCTION

Autonomous vehicles tend to benefit society, referring to

locomotion, ensuring more safety in critical conditions,

reducing the stress generated by large cities’ traffic, and

others. [1]

II. THEORETICAL FOUNDATION

Decision making is the cognitive process by which a plan of

action is chosen from several others (based on various

scenarios, environments, analyzes, and factors) for a

problem situation. Every decision-making process produces

a final choice. The output may be an action or an opinion.

Decision-making refers to the process of choosing the most

appropriate path in a given circumstance. [2]

In the real world, we deal with uncertainties, situations of

inconsistencies, and often we have only a partial recognition

of facts and objects – However, this does not prevent the

development of human reasoning that is beyond the binary

relation of truth and falsity [3]. The need to demonstrate and

treat contradictory and non-trivial situations led to the

emergence of an underlying logic for formal systems called

paraconsistent logics [4].

A. Paraconsistent logic

The necessity to make decisions occurs at a moment of

deadlock, which there are more than one option to follow.

We make decisions based on subjective aspects; subjectivity

has no perfect measure; it is organized, systematically and

objectively. [2]

Paraconsistent Logic is among the non-classical logical

since it contains provisions contrary to some of the basic

principles of Aristotelian Logic, such as the principle of

contradiction. Under Aristotelian view, any statement is

necessarily true or false. According to the Paraconsistent

Logic, a sentence and its negation may both be true [4]. It

works with propositions of type p (μ, λ), where p is a

proposition and (μ, λ) indicate the degrees of favorable

evidence and contrary evidence, respectively. The pair (μ, λ)

is called the annotation constant, with the values of μ and λ

being limited between 0 and 1 [5]. The input data processing

takes place through the application of minimization and

maximization connectives between the atomic formulas A

and B that define the output state, considering the

propositional ones with their respective degrees of certainty

and uncertainty pA (μ1, λ1) and pB (μ2, λ2), the highest value

is obtained between the degrees of certainty (μ1 OR μ2),

obtaining the resulting degree of certainty (μR), then

minimizing the degrees of uncertainty (λ1 OR λ2) obtaining

the degree of resulting uncertainty (λR) [5].

Considering the scenario of two expert groups A (E1, E2)

and B (E3, E4), we can demonstrate the application of the

OR connective represented by the disjunction A v B:

E1 (μ1, λ1) OR E2 (μ2, λ2) = (Max {μ1, μ2}, Min {λ1, λ2}) =

AR (μ1, λ1)

E3(μ1, λ1) OR E4(μ2, λ2) = (Max {μ1, μ2}, Min {λ1, λ2}) =

AR (μ2, λ2)

Then the application of the AND connective between the

annotated AR and BR signals, representing the AR

Conjunction ʌ BR:

R = AR (μ1, λ1) AND BR (μ2, λ2) = (Min {μ1, μ2}, Max {λ1,

λ2}) = R (μ1, λ1)

After maximization and minimization, the degrees of

certainty and uncertainty are obtained by:

mailto:nakamatu@shse.u-hyogo.ac.jp

• Degree of certainty: Gce(μ, λ) = μ - λ

• Degree of Uncertainty: Gun(μ, λ) = μ + λ - 1

Two external and arbitrary boundary values (Vcve = Truth

control value and Vcfa = False control value) determine

when the resulting degree of certainty is high enough that

the proposition analyzed is considered totally true or totally

false.

Likewise, two external and arbitrary boundary values (Vcic

= Control value of inconsistency and Vcpa = Control value

of paracompleteness) determine when the value of the

degree of uncertainty resulting from the analysis is so high

that the proposition can be considered totally inconsistent or

totally paracomplete (Table 1).

TABLE I. EXTREME VALUES [6]

External Limit Values

Vcve Truth control value

Vcfa False control value

Vcic Inconsistency control value

Vcpa Paracomplete control value

After determining the four limit values and the results of the

degree of certainty and uncertainty, it is possible to identify

the resulting logical state. Through the use of such concepts,

we arrive in Figure 1.

Fig. 1. Diagram with the degrees of certainty and uncertainty, with

adjustable values of limit control, indicated in the axes [6]

The logical states which are represented by regions that

occupy the vertices of the lattice are: True, False,

Inconsistent and Paracomplete. These are called extreme

logic states. The output logic states represented by internal

regions in the lattice that is not the extreme logic states are

called non-extreme logic states. Each non-extreme logical

state is named according to its proximity to the extreme

logic states.

The following are four logical states extreme Table 2 and

eight non-extreme Table 3 that make up the lattice of Figure

2.

TABLE II. EXTREME STATES [6]

Extreme State Symbol

True V

False F

Inconsistent T

Paracomplete 

TABLE III. NON-EXTREME STATES [6]

Non-Extreme State Symbol

Quasi-true tending to Inconsistent QVT

Quasi-true tending to Paracomplete QV

Quasi-false tending to Inconsistent QFT

Quasi-false tending to Paracomplete QF

Quasi-Inconsistent tending to True QTt

Quasi-Inconsistente tending to False QTF

Quasi-Paracomplete tending to True QV

Quasi-Paracomplete tending to False QF

Fig. 2. Division of the lattice in 12 regions [6]

The characterization the resulting logical states, the

following rules are considered (Table 4):

TABLE IV. MATHEMATICAL CHARACTERIZATION OF THE STATES [5]

Condition Resulting State

If Gcer(μ, λ) ≥ Vcve True

If Gcer(μ, λ) ≤ Vcfa False

If Ginc(μ, λ) ≥ Vcic Inconsistent

If Ginc(μ, λ) ≤ Vcpa Paracomplete

If 0 ≤ Gcer(μ, λ) < Vcve

and 0 ≤ Ginc(μ, λ) < Vcic

and Gcer(μ, λ) ≥ Ginc(μ, λ)

Quasi-true tending to

Inconsistent

If 0 ≤ Gcer(μ, λ) < Vcve

and 0 ≤ Ginc(μ, λ) < Vcic

and Gcer(μ, λ) < Ginc(μ, λ)

Quasi-Inconsistent tending to

true

If 0 ≤ Gcer(μ, λ) < Vcve

and Vcpa < Ginc(μ, λ) ≤ 0

and Gcer(μ, λ) ≥ |Ginc(μ, λ)|

Quasi-true tending to
Paracomplete

If 0 ≤ Gcer(μ, λ) < Vcve

and Vcpa < Ginc(μ, λ) ≤ 0

and Gcer(μ, λ) < |Ginc(μ, λ)|

Quasi-Paracomplete tending
to true

If Vcfa < Gcer(μ, λ) ≤ 0

and Vcpa < Ginc(μ, λ) ≤ 0
and |Gcer(μ, λ)| ≥ |Ginc(μ, λ)|

Quasi-false tending to

Paracomplete

If Vcfa < Gcer(μ, λ) ≤ 0

and Vcpa < Ginc(μ, λ) ≤ 0

and |Gcer(μ, λ)| < |Ginc(μ, λ)|

Quasi-Paracomplete
tendending to False

If Vcfa < Gcer(μ, λ) ≤ 0

and 0 ≤ Ginc(μ, λ) < Vcic

and |Gcer(μ, λ)| ≥ Ginc(μ, λ)

Quasi-false tending to
Inconsistent’

If Vcfa < Gcer(μ, λ) ≤ 0

and 0 ≤ Ginc(μ, λ) < Vcic
and |Gcer(μ, λ)| < Ginc(μ, λ)

Quasi-inconsistent tending to

False

B. Hardware

Arduino is an open source hardware platform, designed on

the Atmel AVR microcontroller, which can be programmed

through a programming language similar to C / C ++,

allowing the preparation of projects with a basic or no

programming and electronic knowledge. [7]

Motors and H-Bridge. The basic principle of DC motors is

to let the electric current flow through a coil, creating a

magnetic field. This magnetic field applied to a magnet

results in the rotation of the shaft, which may be connected

to wheels, propellers or any other type of gear. [7]

The H-Bridge is an integrated circuit that facilitates the

assembly of circuits for the use of motors, allowing the

movement of these motors clockwise and counter clockwise.

These plates protect the motor circuit of the others, avoiding

damages. [9]

Ultrasonic Sensor. The ultrasonic sensor HC-SR04 allows

detecting objects that are in the distance between 1 and 200

cm.

This sensor emits an ultrasonic signal that reflects in an

object and returns to the sensor, allowing to calculate the

distance of the object concerning the sensor, adopting as a

base the time of trajectory of the signal. [7]

Chassis. The chosen chassis was the standard model of the

kits supplied with the Arduino microcontroller. Acrylic

structure, with three wheels being two associated with

motors and the third wheel, formed by bearing without

motor control. [10]

C. Methodology

Experimental implementation of paraconsistent logic

concepts through the construction of a prototype based on

the Arduino platform

III. PROTOTYPE

Figure 4 shows the circuit with all the components used.

PowerBank Lotus LT55, lithium battery with a capacity of

10000mAh @ 3.7V, DC input 5V 2A output DC 5V 1A /

2.1A output:> 6800MAH> 31.5WH, with two USB inputs

where the USB1 feeds Arduino and USB2 power the

motors.

Two ultrasonic sensors were used, in which one

corresponded to a "favorable degree of evidence" and the

other to "opposite degree of evidence." Arduino pins 4, 5, 6

and seven are used to control the two motors connected to

H-Bridge.

The pins 9 (Trigger) and 12 (Echo) is responsible for

controlling the left-hand ultrasonic () and the pins 10

(Trigger) and 13 (Echo) the right () pins.

Fig. 3. Prototype Wiring Scheme

Fig. 4. Prototype

Fig. 5. Prototype

IV. EVENT DEFINITIONS

As proposition, it was considered that there are no obstacles

in front of the vehicle.

Maximum distance was taken by sensors: 120 cm.

For maximum distance, was assigned  value 1 and for 

value 0, in correspondence for the minimum distance, was

assigned  value 0 and for  value 1. For control values,

Vcve was assigned +0 value, 5, for the Vcfa was assigned

value -0.5, for the Vcic was assigned +0.5 value and for

Vcpa was assigned value -0.5. Figures 11 and 12 correlate

extreme and non-extreme logic states with regions that were

considered as possible obstacle holders. The center line

comprises the perfectly defined line, where the degree of

certainty becomes more decisive about the presence of

obstacles. As it moves away from the center line towards the

vertical extremes, the level of inconsistency and

indetermination increases, as a consequence, the actions

referring to the states near the center line and  tending to 0

indicate the presence of an obstacle closer and closer to the

vehicle. Therefore, more actions should be taken.

Fig. 6. Prototype decisions in logic state

Fig. 7. Prototype extreme state

V. SOURCE CODE

#include <Ultrasonic.h>

//Ultrasonic pins

#define pino_trigger_mi 9 // The sensor sends a

ultrasonic wave

#define pino_trigger_lambda 10 // The object reflect this

wave and

#define pino_echo_mi 12 // Echo recive the wave

#define pino_echo_lambda 13

//Ultrasonic Start Up

Ultrasonic sensor_mi(pino_trigger_mi, pino_echo_mi);

Ultrasonic sensor_lambda(pino_trigger_lambda,

pino_echo_lambda);

// Control Variables

float distancia_mi; // distance value for sensor_mi

float distancia_lambda; // distance value for

sensor_lambda

float vcve = 0.5; // control variable for true

float vcfa = -0.5; // control variable for false

float vcic = 0.5; // control variable for

inconsistency

float vcpa = -0.5; // control variable for de

paracomplete

// ParaAnaliser

int paraAnalisador(float mi, float lambda) {

 // Normalization of evidence degree between 0 and 1

 mi = mi / 100; // Favorable degree - 0 , 1

 lambda = lambda / 100; // Unfavorable degree -

0 , 1

 float Gce = mi - lambda; // Gce - certainty

degree - Gce = mi - lambda

 float Gin = ((mi + lambda) - 1); // Gin - uncertainty

degree - Gin = mi + lambda - 1

 int estado = 0; // Logic States, Extreme and

Non-Extreme

 float modulo_Gce; // Module Value for

certainty

 float modulo_Gin; // Module Value for

uncertainty

 if (Gce < 0)

 modulo_Gce = Gce * (-1);

 else

 modulo_Gce = Gce;

 if (Gin < 0)

 modulo_Gin = Gin * (-1);

 else

 modulo_Gin = Gin;

 // Extreme states definition

 // Proposition: path ahead is clear

 if(Gce >= vcve)

 estado = 1; //true - path is clear

 else if(Gce <= vcfa)

 estado = 2; //False - it will hit - Stop, backwards, turn

right and left

 else if(Gin >= vcic)

 estado = 3; //Inconsistent - turn slightly right

 else if(Gin <= vcpa)

 estado = 4; //Paracompleto - turn slightly left

 else if((Gce >= 0) && (Gce < vcve) && (Gin >=

0) && (Gin < vcic) && (Gce >= Gin))

 estado = 5; //Quasi-true tending to

inconsistent - Turn right, more than state 3

 else if((Gce >= 0) && (Gce < vcve) && (Gin

>= 0) && (Gin < vcic) && (Gce < Gin))

 estado = 6; //inconsistent tending to true -

turn slightly left , less than state 5

 else if((Gce >= 0) && (Gce < vcve) &&

(Gin > vcpa) && (Gin <= 0) && (Gce >= modulo_Gin))

 estado = 7; //Quasi-true tending

paracomplete- turn left, more than state 8

 else if((Gce >= 0) && (Gce < vcve) &&

(Gin > vcpa) && (Gin <= 0) && (Gce < modulo_Gin))

 estado = 8; // paracomplete tending

to true - turn slightly left , more than state 4

 else if((Gce > vcfa) && (Gce <= 0)

&& (Gin > vcpa) && (Gin <= 0) && (modulo_Gce >=

modulo_Gin))

 estado = 9; // quasi-false tending

to paraconsistent - Stop, turn left

 else if((Gce > vcfa) && (Gce <=

0) && (Gin > vcpa) && (Gce < Gin) && (Gin <= 0))

 estado = 10; // paracomplete

tending to false - Stop, turn left

 else if((Gce > vcfa) && (Gce

<= 0) && (Gin >= 0) && (Gin < vcic) && (Gce >=

Gin))

 estado = 11; // quasi-false

tending to inconsistent- Stop, turn right

 else if((Gce <= 0) && (Gce

< vcfa) && (Gin >= 0) && (Gin < vcic) && (Gce <

Gin))

 estado = 12;

//inconsistent tending to false - Stop, turn slightly right

 return estado;

}

// H-Bridge variables (L293D)

int in1 = 7; // input 1

int in2 = 6; // input 2

int in3 = 5; // input 3

int in4 = 4; // input 4

// Distance ajustment

float ajusteDistancia(Ultrasonic sensor) {

 float cmMsec;

 long microsec = sensor.timing();

 cmMsec = sensor.convert(microsec, Ultrasonic::CM);

 if (cmMsec > 120) //Define maximum distance

 cmMsec = 120;

 else if (cmMsec < 5) //Define minimum distance

 cmMsec = 5;

 return cmMsec;

}

void setup() {

 Serial.begin(9600);

 pinMode(in1, OUTPUT);

 pinMode(in2, OUTPUT);

 pinMode(in3, OUTPUT);

 pinMode(in4, OUTPUT);

 pinMode(verde_verdadeiro , OUTPUT);

 pinMode(vermelho_falsidade , OUTPUT);

 pinMode(amarelo_inconsistente, OUTPUT);

 pinMode(branco_paracompleto , OUTPUT);

}

// Motor Control

void para(){

 digitalWrite(in2,LOW);

 digitalWrite(in1,LOW);

 digitalWrite(in3,LOW);

 digitalWrite(in4,LOW);

}

void anda(){

 digitalWrite(in1,LOW);

 digitalWrite(in3,HIGH);

 digitalWrite(in2,HIGH);

 digitalWrite(in4,LOW);

}

void re(){

 digitalWrite(in1,HIGH);

 digitalWrite(in3,LOW);

 digitalWrite(in2,LOW);

 digitalWrite(in4,HIGH);

}

void direita(){

 digitalWrite(in1,LOW);

 digitalWrite(in3,LOW);

 digitalWrite(in2,HIGH);

 digitalWrite(in4,LOW);

}

void esquerda(){

 digitalWrite(in1,LOW);

 digitalWrite(in3,HIGH);

 digitalWrite(in2,LOW);

 digitalWrite(in4,LOW);

}

void esquerda_f(){

 digitalWrite(in1,HIGH);

 digitalWrite(in3,HIGH);

 digitalWrite(in2,LOW);

 digitalWrite(in4,LOW);

}

void direita_f(){

 digitalWrite(in1,LOW);

 digitalWrite(in3,LOW);

 digitalWrite(in2,HIGH);

 digitalWrite(in4,HIGH);

}

// --- LOOP ---

void loop() {

 distancia_mi = map(ajusteDistancia(sensor_mi), 10, 120,

0, 100);

 distancia_lambda = map(ajusteDistancia(sensor_lambda),

10, 120, 100, 0);

 int estado =

paraAnalisador(distancia_mi,distancia_lambda);

 Serial.println(String("Distance-mi : ") + distancia_mi +

String("| Distance-lambda : ") + distancia_lambda +

String("| State : ") + estado);

 if(estado == 1){

 anda();

 }

 else if(estado == 2){

 re();

 }

 else if(estado == 3){

 direita_f();

 anda();

 esquerda_f();

 }

 else if(estado == 4){

 esquerda_f();

 anda();

 direita_f();

 }

 else if(estado == 5){

 direita_f();

 }

 else if(estado == 6){

 direita();

 }

 else if(estado == 7){

 esquerda_f();

 }

 else if(estado == 8){

 esquerda();

 }

 else if(estado == 9){

 para();

 esquerda_f();

 delay(500);

 }

 else if(estado == 10){

 para();

 esquerda();

 }

 else if(estado == 11){

 para();

 direita_f();

 delay(500);

 }

 else if(estado == 12){

 para();

 direita();

 }

}

VI. CONCLUSIONS

During the tests, all the logical states were identified,

when facing obstacles, in diagonal, the position of the

sensors did not prove useful and are in need of adjustments.

Although the hardware limitations, the decision making

process proved to be efficient in relation of response time,

deviating obstacles with relative ease, the number of

collisions presented an index with less than 5% in relation of

sample universe formed by 123 obstacles.

REFERENCES

[1] Jung, C.R. et al. Computação embarcada: Projeto e implementação de

veículos autônomos inteligentes. Anais do CSBC (in Portuguese), v.
5, p. 1358-1406, 2005.

[2] Shimizu, T. (2006). Decisão nas Organizações (Vol. 2 ed.) (in
Portuguese), São Paulo, SP, Brasil: Atlas, 2006.

[3] Martins, H. G. (2003). A Lógica Paraconsistente Anotada de Quatro
Valores LPA4v aplicada em Sistemas de Raciocínio Baseado em
Casos para o Restabelecimento de Subestações Elétricas. Tese de
Doutorado apresentada à Universidade Federal de Itajubá, 2003.

[4] Akama, S., “Towards Paraconsistent Engineering,” Intelligent

Systems Reference Library, Volume 110, 234 pages, 2016.

[5] Abe, J.M., S. Akama, K. Nakamatsu, “Introduction to Annotated
Logics - Foundations for Paracomplete and Paraconsistent
Reasoning,” Series Title Intelligent Systems Reference Library,
Volume 88, Springer International Publishing, Copyright Holder
Springer International Publishing Switzerland, ISBN 978-3-319-
17911-7, Edition Number 1, 190 pages, 2015.

[6] Abe, J.M., “Paraconsistent Intelligent Based-Systems: New Trends in
the Applications of Paraconsistency,” editor, Book Series: “Intelligent
Systems Reference Library,” Springer-Verlag, Vol. 94, ISBN:978-3-
319-19721-0, 306 pages, 2015.

[7] Oliveira, C.L.V., H.A.P. Zanetti, Descomplicado: como elaborar
projetos de eletrônica (in Portuguese), Saraiva Educação SA, 2015.

[8] Fritzing. Available at: http://fritzing.org/home/ Retrieved 2018-11-10

[9] Thomsen, Adilson. Motor DC com Driver Ponte H L298N. 2013.
Available in: https://www.filipeflop.com/blog/motor-dc-arduino-
ponte-h-l298n/. Retrieved 2018-11-10

[10] MSS Eletrônica Available at:
https://www.msseletronica.com/detalhes/kit-chassis-2-rodas-2-
motores-eletricos-dc-cc-para-robos-robotica-carrinho-2wd/990.html.
Retrieved 10/11/2018

http://link.springer.com/bookseries/8578
http://link.springer.com/bookseries/8578

