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Abstract—With the help of a proper parameter space P,, is the orbit of zy, under iteration byf, ;. It means that
defined for the class of real rational maps (1), in this work, ve =, , = fan(zi), i = 0,1,...,n. Each solutionz = ¢ of

define lines in the form b = ¢(a), that will be used as roads in ¢n (z) = =, using fixed parameters = ao and b = b,

a traffic map, which will contribute to a better understanding “& . ted fixed point of order f - Th |
of their behaviour, under iteration. This family of maps have a is designated fixed point of order for f., . These values,

very interesting dynamic, where we can confirm the existence under iteration byf,, »,, are invariant. They can be classified
of several bifurcation types. Using tools, from Combinatoral ~as attractors if f, ()| < 1, repulsors if|f; ,(£)| > 1 and
Dynamics, Entropy and Bifurcation Analysis, with common u® neutral if |f2 ()] = 1. The solution set off ,(z) = 0 is the
in Low Dimension Dynamical Systems studies, it is shown that critical set off, ,, where we will include the values = +oc.

these roads clearly depend on the relationship between vables In this family of 1. b imol hic ob "
a and b, highlighting some important aspects of this relationship n this family of maps (1), by a simple graphic observation,

which help to describe the dynamics of map (1). we can see thatlim fa(z) = 1. So, under iteration of, s,
b—a the values present in some neighbourhood of infinite, have
fap(z) =1+ 5— b<a, b<1 (1) the same behaviour of the value= 1, under iteration. It is
now obvious that the singularities ¢, « = ++/b, under
Index Terms—Real Rational Maps, Iteration, Bifurcation iteration, will have also the same behaviour of the value 1,
Sincefu,b(i\/g) =0 = fab(fab(i\/g)) = fa,b(oo) =1,s0
|. INTRODUCTION we will use the orbitz = 1 to represent the orbit of = oo

andz = +v/b. If, by any chance, the orbit of = 1 would

Discrete time dynamical systems generated by iterated m%%speriodic then we say that the orbits 6o and v/ are
appear in many scientific areas, such as economics, erbq}]éntually periodic

heering, and ec_ology. To understand better the beh_aviour“g? classical low-dimension dynamics, as the studynafhodal
these systems is used, frequently, some results derived fr aps under iteration, classified as interval maps [1] and [4]

hifurcation analysis, establishing some order in Chams' the analysis of critical orbit set is enough to have a full

|Ocli'éscription of the map dynamics [4]. And the most important

orbits, in continuous maps, are the ones with peipdue to

its connection to Sharkovsky's theorem, as shown very geepl
chapter 2 of [1].

tational simulation results, with different values of caht
parameters.
The notion of iterated function system was introduced by

F&B_sr?s(ljety zznd SbDlin:kﬁ" N 19?5\5’ bu(tj_the égncegtés USUagyce our map (1) is discontinuous, and real, in the lastdleca
31 ”.Cl; ed Ot oand f ;Jhc IESOE"{ thor mgk vvfarL : \/tstrsc mall attempts where made to develop some consistent theory
€ dea Is traced Turther back to tne works ol Legge a'l'(ﬂnilar to the one developed to continuous interval mapéjin [

Williams, who studied fixed points of contractive maps finit%ut so far with no any relevant progress. We have excellent
composition. Iterated function systems are interactingh wi

fields of math tics. F le. th ¢ Ifcontributions from James Yorke [5] and Laura Gardini [6],
many Tields of mathematics. For example, they are usetu glrnong others referenced by these authors, attempts to mini-
creating fractals, learning models, interesting prolighbdis-

tributi d vsi tochasti ith M mize the damage caused by the presence of singular values,
pnrol:):a(r)tri]es-san analysing stochaslic processes wi Vbut the full description of the real rational maps dynamics

In thi it will be presented some numerical and aedm tis a stronghold very hard to conquer, even with the use of
s bape € presented some numerical and geome merging computational tools of 21st century allied to the
cal results, supported by high and extensive analyticaldas,

but not fully shown in this paper, due to size and complexi
usually found in real rational maps, under iteration.

Let f,(x) be then — iterate of f,;, i. e., the map compo-
sition, by itself,n — times. The sequence

newest analytic tools. But one idea is clear, if we cannot
té(eal very well with the singularities, at least we can use the
continuous part of the function and make some restrictions t
the dynamical domain and compare the findings, building a
Scaottish quilt of knowledge that can be close to that should
be the full dynamical description of the real rational map.

Since f; ,(z) = 0 & z = 0 and zk)l;g:noof(;’b(x) = 0 then
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the critical orbits are the ones produced by the criticaligga) For bifurcation values of the function, we will have= 0,

and following the road of discovery like Milnor and Thurstorand A — oo for values wheref (z) have super stable orbits.
did in [4], for continuous maps, then we will try to revealLyapunov Exponent are also used to calculate an estimative t
the dynamical secrets of this class of mafys,. To do that the Topological Entropy, from which we can obtained dethile
we used some computational work, and construct the projeformation about the orbit behaviour. See [7] for a more
analytical tools to prove some results. Numerically, weatede complete description.

a process to identify regions iR, ,, defined as the parameterThe bifurcation of a function is characterized as being a
space forf, », where, for some fixed = ap andb = by we can splitting of a specific orbit, occurring with the modificatio
find periodic orbits forr = 0 andx = 1. To do an organized of a parameter that controls the function. For example, for
search we will study the map’s behaviour following the linegy(x) = Az(1 — z), with the change of parametar we will

b = p(a), the paths or roads, with € I (see section Ill). assist to a double period bifurcation, with periodic orbit 2

We define the seE = {(a,b) € I : f;,(0) =0V f;,(1) = splitting ton = 4, then goes, = 8, and so on. But it can occur
1, n € N}, where to any fixed paifa, b) = (ag, bg), Wwe can also the splitting fromn = 1 to n = 3, thenn = 7, and so
find roads in the parameter sBf ;, such the mag,, », will on, like the maps studied by Laura Gardini in [6].

have periodic super-stable orbits, under iteration. Smeavill The map (1) have parameterandbd, and for certain values of
work, mostly, with the geometric view of the orbits, it is @su the pair(a, b), the structure of fixed points and periodic orbits
to call them trajectories. changes. In the same way as the maps with only parameter,
Studying the geometry of, ;, and, it is our goal to show we define this change as a bifurcation. The graphic, where
that f, 5, as a piecewise differentiable map, presents some can analyse, geometrically, the period variations diggr
behaviour similar to the one exhibited by bi-modal and on¢he parameter change is called Bifurcation Diagram. Todbuil
modal class of maps studied by Milnor and Thurston [4the bifurcation diagram of (1) we need to make= ¢(a),
among so many other authors, that followed their work. Tia order to transformf,; in a function of one parameter
fulfil the goal, we use techniques derived from combinatorianly. There are many types of bifurcations present in a gmpl
dynamics, such as Bifurcation Analysis, Entropy Study arafurcation diagram forf, ,), and we will explore it in
Interpretation of Lyapunov Exponents value [3], to studg thsection (IV), as we can see, for example, in figure 4. We
relation between periodic orbits and the behaviour of mgp (&@an find saddle-node bifurcationccurring when a pair of

under iteration. fixed points appears in a region where there were none, with
one stable fixed point and one unstable fixed popatiod-
Il. LYAPUNOV AND BIFURCATION THEORY doubling bifurcation characterized by the loss of stability of

Chaotic behaviours are characterized by a high sensitiwitythe original fixed point, the period doubles, and the natidre o
initial conditions: Starting from arbitrarily close to daother, attractor changesyorder-collision bifurcationsas described
the trajectories rapidly diverge. in detail by Helena E. Nusse and James Yorke in [5] and
The map (1) is discontinuous, then the results, already knowomplemented by Roya Makrooni, Farhad Khellat and Laura
for continuous maps, cannot be applied to this map’s fami§gardini in [6] is mainly characterized by a suddenly chanfje o
but we can use some of them as a start point to understamg fixed point attractor in an-piecechaotic attractor. Also,
its dynamics. One of these tools are the Lyapunov Exponerws can find the reverse bifurcation phenomena.
integrated in a very Ia_lrge field of res_earch known as Lyapunov 1. PARAMETER SPACEP, 5 FOR fu.5(0).
Theory. The connection between this Theory and the study of ] " R
the dynamics of real maps is, undoubtedly, very important, 10 Study the behaviour, under iteration, of the map (1)
since help to understand the connection between analy€ need some simple results about the variables domain, in

results and computational. The power of Lyapunov Theoﬂfder to build a parameter space where we will get useful

comes from the fact that it is used to make conclusions abdformation. In [2], we can found complementary data about

the dynamics of a system, without finding exactly the valdes 1€ MapP (1). _
the trajectories, saving computational time and endlealytin Ve establish the domain for the paramete=ndb as the set

efforts. Young [7] and Katok [3] have a splendid description ) 2/3 23

of use and properties of Lyapunov exponents. I'=4{(a,b) eR™:1— g <e<lt—g=b<ab<ly.
For a functionf(x), each trajectory{x;} have the Lyapunov

Exponent defined as As we can check in [4], due to the Sharkovskii theorem, the

orbits of period n = 3, of the critical points, assumes in the
dynamics of a continuous map a very important role, since
(2)  their existence in continuous maps assures the existeralé of
others orbits. So, will use, as reference, the period 3 @it
Since )\ is the same for all;; on the basin of attraction the critical valuest = 0 andx = 1.
of &, if £ is an attractor, the sign of defines the attractor As explained before, whenever a value, under iteratiots fal
type. If A < 0 we are in the presence of limit cycle orin a neighbourhood of somg, ;, discontinuity, the forward
stable fixed points; IfA > 0 we have chaotic attractors.image will beco, and the next iteration will be trapped in the

n—1

1
A= fin D i

=0

f ()




orbit of x = 1. For our map (1), the lines= ¢(a), where this
phenomena occurs, will play an important role in the functio
dynamics, since the computational calculus will tend to be
unstable near these lines. Solving the equaﬁé@(l) =1,

we will have two possible linedi = «a, that reduces the map
to a trivial one, and

With w = =25+ 54a —27a® + \/—4 + (—25 + 5da — 27a?)2. 1 .
For 4+ (25 — 54a + 27a%)” = 0, will havea = 1 (9 +2v/3). ‘
These values are the ones used to set the range ifod .
We define the parameter space % s : <

Fig. 2. Relation betweetP, ;, and the linesh = ¢(a) in f3,(p1) = p2,

Py ={(a,b) € I: fy(x) = 2,n = 3,4,...}, with p1,p2 € {0, 1, £V}
represented in figure 1. Definition 1. Let the solution lineb = o(a) of the equation
2,(1) = 1, such that all the points are included ih This
line is the border of a region that we will define as the locus

Ly.

Ly will help us to understand the diagrams in the next
section.

IV. BIFURCATIONS EXPLORATION

Now, we will transform our map (1) in one parameter map.

Let b = p(a), with (a,b) = (a,¢(a)) € Payp With ¢ € C1,
then we will have

ola) —a 2’ —a

fup@) = fald) =14 5225 = s @)

Fig. 1. Parameter spadg, , with n < 120 for f?, (z).

It appears to have fractal properties, since we can see a
process ofself-similarity. Each one of the big black regions, \wjth this transformation we can start to explore the dy-
after excluding the upper-left black region where- a, aré namics of (1) in the interior of , analysing the bifurcation
sets, designated hy-Bulbs in [2], geometric neighbourhoodsgiagrams of the critical orbit = 0. We choose in this paper to
of all solutions linesh = (a) of the equation/;’,(0) = 0, explore just the cases whegeis a straight line with positive
which each paifa, b) produces maps with critical super—stabl%mpe_
orbits with periodn. We can see in figure 3 the line = ¢(a) = —1.14723 +
We can, inP, ;, identify important lines, see figure 2, where, 096774, in cyan, crossing all the basins of attraction of
the solution lineb = ¢(a) of f7,(0) = 0 is coloured in the super stable lines, and analysing the correspondient
white; the solution off2,(0) = —v/b in yellow; the solution bifurcation diagram, figure 4, we can identify at least one
of fib(o) = /b in green and the solution quj,b(l) = 1in valuea = 0.76, where the orbit of the critical point = 0
blue. will produce a periodio» = 3 super stable orbit.



of f,, it can be a very hard process due to the nature
of rational maps iteration. Nowadays, most of the results,
arising from the low dimension dynamics study, for real
rational maps, are initial triggered by computational ntime
calculus in association with a very deep knowledge of Inifplic
Theorem application. To avoid the analytic difficultiesatesl

by the conditions necessary to apply the Implicit Theorem,
we show that the combined use of Lyapunov Exponent and
Bifurcation diagrams, can be a great tool, providing a good
initial approximation, on the search for intervals of chaos
regularity of f,.

As an example, letp(a) = 0.02025 4 0.26625a, the straight
line in figure 6, and the bifurcation diagram in figure 7, that
shows the behaviour of the orbit ef= 0, under iteration of
fa, With 0.57 < a < 1.43.

. 3 N R
0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Fig. 4. f, bifurcation diagrame(a) = —1.147+2.096a, 0.57 < a < 1.43

Also we can observe intervals of stability f@g and others
where chaos prevail. For certain intervals of the valwee can
identify phenomena like reverse bifurcations, double qxbri
bifurcations and, hidden among chaos windows, saddle-node
bifurcations. Using Lyapunov Exponent diagram, figure 5 we
can calculate the maximum value of topological entropy for
0.80 < a < 0.85, that is, approximately. = 0.409038.
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Fig. 6. ¢(a) = 0.02025 + 0.26625a crossingPy, ;
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Fig. 7. Bifurcation diagram forf, with ¢(a) = 0.02025 + 0.26625a,and
0.57 < a < 1.43

Close to the values = 0.8925 we have a super stable

Fig. 5. fa Lyapunov Exponentsp(a) = —1.147 + 2.096a

orbit of the critical point and at = 1.377 we have a border

collision bifurcation. But what happens at= 0.6425? Is it

The analysis of the bifurcation diagram is not sufficiersnother border collision bifurcation? If yes, it is not seilile.
to produce a deep study about the dynamics of function (8jerging both diagrams, bifurcation an Lyapunov Exponent,

Hidden, in intervals of supposed chaos, we can observe sowe have the figure 8. As mentioned in section II\if— oo

regularity, like it happens in classic bifurcation diagsafor

then we have the presence of super stable orbit, and that is

continuous maps. Also, to explore analytically the dynamithe case ofi = 0.6425, anda = 1.377, where the orbit of the



critical pointz = 0 falls in an super stable orbit of the other s|
critical pointz = co. We can observe that these two values
corresponds to the intersection ¢fa) with the solution line
of f3(1) = 1. The only super stable orbit of = 0 is at | J //’
a = 0.8925, easily identified because it corresponds to the /._-—-“w
intersection ofp(a), with the solution line off3(0) = 0, see 21~ |
figure 6. Also, in figure 8 we can see, fbR2 < a < 1.3, that ™
we will have at least one value wheke= 0, revealing a region ° 7 e f1°
where we will find another bifurcation point, and it must befz,\ ’ ) ’

a period doubling or saddle-node bifurcation. So the points
a = 0.6425 anda = 1.377 are border collision bifurcation -
points of x = 0, where the orbit undergoes in super stable
Orblt Of T = 0. 0.8 0.9 1.0 11 12 13

Fig. 10. Lyapunov Exponents (in red) and bifurcation diagr@n blue) for
fa With b = 0.23353 4 0.13721a, 0.786 < a < 1.3844

3 Selectingy(a) = 0.23353 + 0.13721a we get a interesting
i fa dynamic, as presented in figure 10. We have the presence
y of a super stable orbit, at = 0.826, with A = oo, a double
o period bifurcation, ata = 0.6425, with A = 0, and most
¥ - important a bifurcation at. = 1.284, which at first glance,
probably could be identified as a border collision bifuraati
o= — — i but since\ = 0, at that position, then it must be a saddle node

v ' - bifurcation, as also happensat= 1.35, occurring the border
collision bifurcation ate = 1.38.

0.6 0.8 1.0 12 14

Fig. 8. Lyapunov Exponents (in red) and bifurcation diagramblue) for
fa With @(a) = 0.02025 + 0.26625a, 0.57 < a < 1.43, with vertical lines
in the position where (2) assumes infinite values V. RESULTS

Using P, ; as a guide map, we can find the roads ¢(a),
construct the bifurcation diagram, the Lyapunov Exponent
diagram and write conclusions about the dynamic of map (1),

Graphicall bord lisi b v identf related with the parameter change. Clearly, the association
raphically, a border collision can be wrongly identifiedoeen these two graphics is a powerful tool, allowing the

as a saddle-node blfurc_at|on, but W't.h the help of Lya,pun%searcher collect precious information, and since the foun
Exponents we can av0|_d this graphic qonfusmn. Lets tg ome properties and new kind of bifurcations can be done,
e_mother example, zooming,» to the region represented Inusing numeric computational calculus, they can be the ¢rigg
figure 9. for new ideas and a good start to initiate the analytic prdof o
the graphically observed phenomena.

As we show, in this work, only using the fundamentals of
discrete dynamical systems, we can discover very easityeso
special regions i, ;, where we can find, fof,, well known
behaviours, observed on the dynamics of continuous lagisti
maps and also in piecewise continuomsmodal maps, but
also other behaviour not so common. We also remember that
we focused our attention i ¢, and due to its fractal nature
and self similarity it is easy to see that all the phenomena
described graphically in last section for period 3 orbitsoal

happens for all other periodic orbits.
Fig. 9. Liney(a) = 0.23353 + 0.13721a crossingPg p Let's examine figure 11.
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Fig. 12. Effects when the parametercrosses the borders of regions NE,

Fig. 11. Comparison betweew, , and the bifurcation and Lyapunov RBR and SNR, with a clear presence of a reverse bifurcation.

Exponents diagrams for the litle= p(a) = 0.0.01972 + 0.3404a, with the

presence of a reverse bifurcation with saddle node bifioresitat its centre. With the use of parameter spagg;, as a map to study the
behaviour of familyf,, we encounter a fertile ground where
can lead to discoveries related with the amazing properties
of this family of maps, building proper roads. Further, with
the adaptation and extension of some tools of piecewise

continuous maps, the main goal is to prove that maps like
We usey(a) = 0.01972 + 0.3404a and signalize the values fa,» €xhibits a behaviour that resemble the one presented by
a € {1.088,1.122,1.2074,1.2302, 1.3582} with arrows. In them-modalfamilies.
11 we enhance the region designated &BI_MR, in which REFERENCES
borders the values produce a saddle-node bifurcation. Indeed . o . _
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If we shift the linep(a), just enough to cross all 4 regions,
we obtain an amazing representation of the dynamicg,of
as represented in figure 12, and it is easy to identify thetpoin
where occur reverse bifurcation, saddle-node bifurcatemd

also border collision bifurcations.



