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Abstract—With the help of a proper parameter spacePa,b,
defined for the class of real rational maps (1), in this work, we
define lines in the form b = ϕ(a), that will be used as roads in
a traffic map, which will contribute to a better understanding
of their behaviour, under iteration. This family of maps have a
very interesting dynamic, where we can confirm the existence
of several bifurcation types. Using tools, from Combinatorial
Dynamics, Entropy and Bifurcation Analysis, with common use
in Low Dimension Dynamical Systems studies, it is shown that
these roads clearly depend on the relationship between variables
a and b, highlighting some important aspects of this relationship,
which help to describe the dynamics of map (1).

fa,b(x) = 1 +
b− a

x2
− b

, b < a, b < 1 (1)

Index Terms—Real Rational Maps, Iteration, Bifurcation

I. I NTRODUCTION

Discrete time dynamical systems generated by iterated maps
appear in many scientific areas, such as economics, engi-
neering, and ecology. To understand better the behaviour of
these systems is used, frequently, some results derived from
bifurcation analysis, establishing some order in chaotic events,
classifying possible behaviours, whose may explain compu-
tational simulation results, with different values of control
parameters.
The notion of iterated function system was introduced by M.
F. Barnsley and S. Demko, in 1985, but the concept is usually
attributed to Joan P. Hutchinson. According Edward R. Vrscay
the idea is traced further back to the works of Leggett and
Williams, who studied fixed points of contractive maps finite
composition. Iterated function systems are interacting with
many fields of mathematics. For example, they are useful for
creating fractals, learning models, interesting probability dis-
tributions and analysing stochastic processes with Markovian
properties.
In this paper it will be presented some numerical and geometri-
cal results, supported by high and extensive analytical calculus,
but not fully shown in this paper, due to size and complexity
usually found in real rational maps, under iteration.
Let fn

a,b(x) be then− iterate of fa,b, i. e., the map compo-
sition, by itself,n− times. The sequence

{xi}i=0,1,...,n = {x0, x1, ..., xn}
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is the orbit of x0, under iteration byfa,b. It means that
xi+1 = fa,b(xi), i = 0, 1, . . . , n. Each solutionx = ξ of
fn
a,b(x) = x, using fixed parametersa = a0 and b = b0,

is designated fixed point of ordern for fa0,b0 . These values,
under iteration byfa0,b0 , are invariant. They can be classified
as attractors if|f ′

a,b(ξ)| < 1, repulsors if|f ′
a,b(ξ)| > 1 and

neutral if |f ′

a,b(ξ)| = 1. The solution set off ′

a,b(x) = 0 is the
critical set offa,b, where we will include the valuesx = ±∞.
In this family of maps (1), by a simple graphic observation,
we can see thatlim

x→±∞
fa,b(x) = 1. So, under iteration offa,b,

the values present in some neighbourhood of infinite, have
the same behaviour of the valuex = 1, under iteration. It is
now obvious that the singularities offa,b, x = ±

√
b, under

iteration, will have also the same behaviour of the valuex = 1,
sincefa,b(±

√
b) = ∞ ⇔ fa,b(fa,b(±

√
b)) = fa,b(∞) = 1, so

we will use the orbitx = 1 to represent the orbit ofx = ±∞
andx = ±

√
b. If, by any chance, the orbit ofx = 1 would

be periodic then we say that the orbits of±∞ and±
√
b are

eventually periodic.
In classical low-dimension dynamics, as the study ofm-modal
maps under iteration, classified as interval maps [1] and [4],
the analysis of critical orbit set is enough to have a full
description of the map dynamics [4]. And the most important
orbits, in continuous maps, are the ones with period3, due to
its connection to Sharkovsky’s theorem, as shown very deeply
in chapter 2 of [1].
Since our map (1) is discontinuous, and real, in the last decades
small attempts where made to develop some consistent theory
similar to the one developed to continuous interval maps in [4],
but so far with no any relevant progress. We have excellent
contributions from James Yorke [5] and Laura Gardini [6],
among others referenced by these authors, attempts to mini-
mize the damage caused by the presence of singular values,
but the full description of the real rational maps dynamics
is a stronghold very hard to conquer, even with the use of
emerging computational tools of 21st century allied to the
newest analytic tools. But one idea is clear, if we cannot
deal very well with the singularities, at least we can use the
continuous part of the function and make some restrictions to
the dynamical domain and compare the findings, building a
Scottish quilt of knowledge that can be close to that should
be the full dynamical description of the real rational map.
Since f ′

a,b(x) = 0 ⇔ x = 0 and lim
x→±∞

f ′

a,b(x) = 0 then

the critical set offa,b will be Λ = {0,∞}. Assuming that



the critical orbits are the ones produced by the critical values,
and following the road of discovery like Milnor and Thurston
did in [4], for continuous maps, then we will try to reveal
the dynamical secrets of this class of mapsfa,b. To do that
we used some computational work, and construct the proper
analytical tools to prove some results. Numerically, we create
a process to identify regions inPa,b, defined as the parameter
space forfa,b, where, for some fixeda = a0 andb = b0 we can
find periodic orbits forx = 0 andx = 1. To do an organized
search we will study the map’s behaviour following the lines
b = ϕ(a), the paths or roads, witha ∈ I (see section III).
We define the setΣ = {(a, b) ∈ I : fn

a,b(0) = 0 ∨ fn
a,b(1) =

1, n ∈ N}, where to any fixed pair(a, b) = (a0, b0), we can
find roads in the parameter setPa,b, such the mapfa0,b0 will
have periodic super-stable orbits, under iteration. Sincewe will
work, mostly, with the geometric view of the orbits, it is usual
to call them trajectories.
Studying the geometry ofPa,b andΣ, it is our goal to show
that fa,b, as a piecewise differentiable map, presents some
behaviour similar to the one exhibited by bi-modal and one-
modal class of maps studied by Milnor and Thurston [4],
among so many other authors, that followed their work. To
fulfil the goal, we use techniques derived from combinatorial
dynamics, such as Bifurcation Analysis, Entropy Study and
Interpretation of Lyapunov Exponents value [3], to study the
relation between periodic orbits and the behaviour of map (1)
under iteration.

II. LYAPUNOV AND BIFURCATION THEORY

Chaotic behaviours are characterized by a high sensitivityto
initial conditions: Starting from arbitrarily close to each other,
the trajectories rapidly diverge.
The map (1) is discontinuous, then the results, already known
for continuous maps, cannot be applied to this map’s family,
but we can use some of them as a start point to understand
its dynamics. One of these tools are the Lyapunov Exponents,
integrated in a very large field of research known as Lyapunov
Theory. The connection between this Theory and the study of
the dynamics of real maps is, undoubtedly, very important,
since help to understand the connection between analytic
results and computational. The power of Lyapunov Theory
comes from the fact that it is used to make conclusions about
the dynamics of a system, without finding exactly the values of
the trajectories, saving computational time and endless analytic
efforts. Young [7] and Katok [3] have a splendid description
of use and properties of Lyapunov exponents.
For a functionf(x), each trajectory{xi} have the Lyapunov
Exponent defined as

λ = lim
n→∞

1

n

n−1
∑

i=0

ln

∣

∣

∣
f

′

(xi)
∣

∣

∣
(2)

Sinceλ is the same for allxi on the basin of attraction
of ξ, if ξ is an attractor, the sign ofλ defines the attractor
type. If λ < 0 we are in the presence of limit cycle or
stable fixed points; Ifλ > 0 we have chaotic attractors.

For bifurcation values of the function, we will haveλ = 0,
andλ → ∞ for values wheref(x) have super stable orbits.
Lyapunov Exponent are also used to calculate an estimative to
the Topological Entropy, from which we can obtained detailed
information about the orbit behaviour. See [7] for a more
complete description.
The bifurcation of a function is characterized as being a
splitting of a specific orbit, occurring with the modification
of a parameter that controls the function. For example, for
fλ(x) = λx(1 − x), with the change of parameterλ, we will
assist to a double period bifurcation, with periodic orbitn = 2
splitting ton = 4, then goesn = 8, and so on. But it can occur
also the splitting fromn = 1 to n = 3, thenn = 7, and so
on, like the maps studied by Laura Gardini in [6].
The map (1) have parametersa andb, and for certain values of
the pair(a, b), the structure of fixed points and periodic orbits
changes. In the same way as the maps with only parameter,
we define this change as a bifurcation. The graphic, where
we can analyse, geometrically, the period variations regarding
the parameter change is called Bifurcation Diagram. To build
the bifurcation diagram of (1) we need to makeb = ϕ(a),
in order to transformfa,b in a function of one parameter
only. There are many types of bifurcations present in a simple
bifurcation diagram forfa,ϕ(a), and we will explore it in
section (IV), as we can see, for example, in figure 4. We
can find saddle-node bifurcations, occurring when a pair of
fixed points appears in a region where there were none, with
one stable fixed point and one unstable fixed point;period-
doubling bifurcation, characterized by the loss of stability of
the original fixed point, the period doubles, and the nature of
attractor changes;border-collision bifurcations, as described
in detail by Helena E. Nusse and James Yorke in [5] and
complemented by Roya Makrooni, Farhad Khellat and Laura
Gardini in [6] is mainly characterized by a suddenly change of
one fixed point attractor in am-piecechaotic attractor. Also,
we can find the reverse bifurcation phenomena.

III. PARAMETER SPACEPa,b FORfa,b(0).

To study the behaviour, under iteration, of the map (1)
we need some simple results about the variables domain, in
order to build a parameter space where we will get useful
information. In [2], we can found complementary data about
the map (1).
We establish the domain for the parametersa andb as the set

I =

{

(a, b) ∈ R
2 : 1− 2

√
3

9
< a < 1 +

2
√
3

9
, b < a, b < 1

}

.

As we can check in [4], due to the Sharkovskii theorem, the
orbits of period n = 3, of the critical points, assumes in the
dynamics of a continuous map a very important role, since
their existence in continuous maps assures the existence ofall
others orbits. So, will use, as reference, the period 3 orbitof
the critical valuesx = 0 andx = 1.
As explained before, whenever a value, under iteration, falls
in a neighbourhood of somefa,b discontinuity, the forward
image will be∞, and the next iteration will be trapped in the



orbit of x = 1. For our map (1), the linesb = ϕ(a), where this
phenomena occurs, will play an important role in the function
dynamics, since the computational calculus will tend to be
unstable near these lines. Solving the equationf3

a,b(1) = 1,
we will have two possible lines:b = a, that reduces the map
to a trivial one, and

b =
1

3

(

2−
(

2

ω

)1/3

−
(ω

2

)1/3
)

,

with ω = −25+54a−27a2+
√

−4 + (−25 + 54a− 27a2)2.
For 4+(25− 54a+ 27a2)

2
= 0, will havea = 1

9

(

9± 2
√
3
)

.
These values are the ones used to set the range fora in I.
We define the parameter space

Pa,b = {(a, b) ∈ I : fn
a,b(x) = x, n = 3, 4, . . .},

represented in figure 1.

Fig. 1. Parameter spacePa,b with n < 120 for fn
a,b

(x).

It appears to have fractal properties, since we can see a
process ofself-similarity. Each one of the big black regions,
after excluding the upper-left black region whereb > a, are
sets, designated byn-Bulbs in [2], geometric neighbourhoods
of all solutions linesb = ϕ(a) of the equationfn

a,b(0) = 0,
which each pair(a, b) produces maps with critical super-stable
orbits with periodn.
We can, inPa,b, identify important lines, see figure 2, where
the solution lineb = ϕ(a) of f3

a,b(0) = 0 is coloured in
white; the solution off3

a,b(0) = −
√
b in yellow; the solution

of f3
a,b(0) =

√
b in green and the solution off3

a,b(1) = 1 in
blue.

Fig. 2. Relation betweenPa,b and the linesb = ϕ(a) in f3

a,b
(p1) = p2,

with p1, p2 ∈ {0, 1, ±
√
b}

Definition 1. Let the solution lineb = ϕ(a) of the equation
f3
a,b(1) = 1, such that all the points are included inI. This

line is the border of a region that we will define as the locus
Lf .

Lf will help us to understand the diagrams in the next
section.

IV. B IFURCATIONS EXPLORATION

Now, we will transform our map (1) in one parameter map.

Let b = ϕ(a), with (a, b) = (a, ϕ(a)) ∈ Pa,b with ϕ ∈ C1,
then we will have

fa,ϕ(a)(x) = fa(x) = 1 +
ϕ(a) − a

x2 − ϕ(a)
=

x2 − a

x2 − ϕ(a)
(3)

With this transformation we can start to explore the dy-
namics of (1) in the interior ofLf , analysing the bifurcation
diagrams of the critical orbitx = 0. We choose in this paper to
explore just the cases whereϕ is a straight line with positive
slope.
We can see in figure 3 the lineb = ϕ(a) = −1.14723 +
2.09677a, in cyan, crossing all the basins of attraction of
the super stable lines, and analysing the correspondentfa
bifurcation diagram, figure 4, we can identify at least one
value a = 0.76, where the orbit of the critical pointx = 0
will produce a periodicn = 3 super stable orbit.



Fig. 3. Example lineb = −1.14723 + 2.09677a
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Fig. 4. fa bifurcation diagram,ϕ(a) = −1.147+2.096a, 0.57 < a < 1.43

Also we can observe intervals of stability forfa and others
where chaos prevail. For certain intervals of the valuea we can
identify phenomena like reverse bifurcations, double period
bifurcations and, hidden among chaos windows, saddle-node
bifurcations. Using Lyapunov Exponent diagram, figure 5 we
can calculate the maximum value of topological entropy for
0.80 < a < 0.85, that is, approximatelyh = 0.409038.

0.70 0.75 0.80 0.85 0.90 0.95 1.00

-1.0

-0.5

Fig. 5. fa Lyapunov Exponents,ϕ(a) = −1.147 + 2.096a

The analysis of the bifurcation diagram is not sufficient
to produce a deep study about the dynamics of function (3).
Hidden, in intervals of supposed chaos, we can observe some
regularity, like it happens in classic bifurcation diagrams for
continuous maps. Also, to explore analytically the dynamics

of fa, it can be a very hard process due to the nature
of rational maps iteration. Nowadays, most of the results,
arising from the low dimension dynamics study, for real
rational maps, are initial triggered by computational numeric
calculus in association with a very deep knowledge of Implicit
Theorem application. To avoid the analytic difficulties created
by the conditions necessary to apply the Implicit Theorem,
we show that the combined use of Lyapunov Exponent and
Bifurcation diagrams, can be a great tool, providing a good
initial approximation, on the search for intervals of chaosor
regularity offa.
As an example, letϕ(a) = 0.02025 + 0.26625a, the straight
line in figure 6, and the bifurcation diagram in figure 7, that
shows the behaviour of the orbit ofx = 0, under iteration of
fa, with 0.57 < a < 1.43.

Fig. 6. ϕ(a) = 0.02025 + 0.26625a crossingPa,b
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Fig. 7. Bifurcation diagram forfa with ϕ(a) = 0.02025 + 0.26625a,and
0.57 < a < 1.43

Close to the valuea = 0.8925 we have a super stable
orbit of the critical point and ata = 1.377 we have a border
collision bifurcation. But what happens ata = 0.6425? Is it
another border collision bifurcation? If yes, it is not so visible.
Merging both diagrams, bifurcation an Lyapunov Exponent,
we have the figure 8. As mentioned in section II, ifλ → ∞
then we have the presence of super stable orbit, and that is
the case ofa = 0.6425, anda = 1.377, where the orbit of the



critical pointx = 0 falls in an super stable orbit of the other
critical point x = ∞. We can observe that these two values
corresponds to the intersection ofϕ(a) with the solution line
of f3

a (1) = 1. The only super stable orbit ofx = 0 is at
a = 0.8925, easily identified because it corresponds to the
intersection ofϕ(a), with the solution line off3

a (0) = 0, see
figure 6. Also, in figure 8 we can see, for1.2 < a < 1.3, that
we will have at least one value whereλ = 0, revealing a region
where we will find another bifurcation point, and it must be
a period doubling or saddle-node bifurcation. So the points
a = 0.6425 and a = 1.377 are border collision bifurcation
points of x = 0, where the orbit undergoes in super stable
orbit of x = ∞.
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Fig. 8. Lyapunov Exponents (in red) and bifurcation diagram(in blue) for
fa with ϕ(a) = 0.02025 + 0.26625a, 0.57 < a < 1.43, with vertical lines
in the position where (2) assumes infinite values

Graphically, a border collision can be wrongly identified
as a saddle-node bifurcation, but with the help of Lyapunov
Exponents we can avoid this graphic confusion. Let’s take
another example, zoomingPa,b to the region represented in
figure 9.

Fig. 9. Lineϕ(a) = 0.23353 + 0.13721a crossingPa,b
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Fig. 10. Lyapunov Exponents (in red) and bifurcation diagram (in blue) for
fa with b = 0.23353 + 0.13721a, 0.786 < a < 1.3844

Selectingϕ(a) = 0.23353 + 0.13721a we get a interesting
fa dynamic, as presented in figure 10. We have the presence
of a super stable orbit, ata = 0.826, with λ = ∞, a double
period bifurcation, ata = 0.6425, with λ = 0, and most
important a bifurcation ata = 1.284, which at first glance,
probably could be identified as a border collision bifurcation,
but sinceλ = 0, at that position, then it must be a saddle node
bifurcation, as also happens ata = 1.35, occurring the border
collision bifurcation ata = 1.38.

V. RESULTS

UsingPa,b as a guide map, we can find the roadsb = ϕ(a),
construct the bifurcation diagram, the Lyapunov Exponent
diagram and write conclusions about the dynamic of map (1),
related with the parametera change. Clearly, the association
between these two graphics is a powerful tool, allowing the
researcher collect precious information, and since the hunt for
some properties and new kind of bifurcations can be done,
using numeric computational calculus, they can be the trigger
for new ideas and a good start to initiate the analytic proof of
the graphically observed phenomena.
As we show, in this work, only using the fundamentals of
discrete dynamical systems, we can discover very easily, some
special regions inPa,b, where we can find, forfa, well known
behaviours, observed on the dynamics of continuous logistic
maps and also in piecewise continuousm-modal maps, but
also other behaviour not so common. We also remember that
we focused our attention inLf , and due to its fractal nature
and self similarity it is easy to see that all the phenomena
described graphically in last section for period 3 orbits also
happens for all other periodic orbits.
Let’s examine figure 11.



Fig. 11. Comparison betweenPa,b and the bifurcation and Lyapunov
Exponents diagrams for the lineb = ϕ(a) = 0.0.01972+0.3404a, with the
presence of a reverse bifurcation with saddle node bifurcations at its centre.

We useϕ(a) = 0.01972+0.3404a and signalize the values
a ∈ {1.088, 1.122, 1.2074, 1.2302, 1.3582} with arrows. In
11 we enhance the region designated bySNR, in which
borders the valuesa produce a saddle-node bifurcation. Indeed
this kind of bifurcation will happen fora = 1.2074 and
a = 1.2302. Also, we enhance the presence of a region
designated byRBR where the valuesa on its south border
will be the responsible for the appearance of a double period
bifurcation, which one that goes in a reversion process inside
of this region building a reverse bifurcation, until the north
border when phenomena ends, entering regionSNR. The
BCB point, where the valuea produces a Border Collision
Bifurcation, is already signalized before and it is part of the
solution line f3

a (1) = 1. Another special region, designated
by NE, is a region where the values at its south border starts
a double period bifurcation, but at the north border, all the
process reverts in a single point to a period order before
doubling and then starts a reverse bifurcation process already
insideRBR.
If we shift the lineϕ(a), just enough to cross all 4 regions,
we obtain an amazing representation of the dynamics offa,
as represented in figure 12, and it is easy to identify the points
where occur reverse bifurcation, saddle-node bifurcations and
also border collision bifurcations.

Fig. 12. Effects when the parametera crosses the borders of regions NE,
RBR and SNR, with a clear presence of a reverse bifurcation.

With the use of parameter spacePa,b as a map to study the
behaviour of familyfa, we encounter a fertile ground where
can lead to discoveries related with the amazing properties
of this family of maps, building proper roads. Further, with
the adaptation and extension of some tools of piecewise
continuous maps, the main goal is to prove that maps like
fa,b exhibits a behaviour that resemble the one presented by
the m-modalfamilies.
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