
A Neural Network Based Approach for
Approximating Real Roots of Polynomials

Diogo Freitas
University of Madeira

Master’s Programme in Mathematics
Funchal, Portugal

2019214@student.uma.pt

Luiz Guerreiro Lopes
University of Madeira, Funchal,

CIMO/IPB, Bragança, and
ICAAM/UE, Évora, Portugal

lopes@uma.pt

Fernando Morgado-Dias
University of Madeira

Madeira Interactive Technologies Institute
Funchal, Portugal
morgado@uma.pt

Abstract—There are many iterative methods for finding all the
zeros of a polynomial sequentially or simultaneously. However,
the determination of all zeros of a given polynomial by one
of the methods that find one zero at a time involves repeated
deflations, which leads to the accumulation of rounding errors
and inaccurate results. In turn, the simultaneous methods require
very good starting approximations for all the zeros in order to
converge. In view of these drawbacks, in this work we adopt
a different approach based on neural networks for finding the
zeros of real polynomials with only real zeros. This approach is
tested with random polynomials of different degrees. The results
obtained, although preliminary and limited, indicate that this
approach seems to be quite robust and promising, and faster
when compared with the well known Durand–Kerner method.

Index Terms—Artificial Neural Networks, Polynomials, Roots,
Durand–Kerner method.

I. INTRODUCTION

Although there are many iterative methods to calculate
one real zero or a pair of complex conjugate zeros of a
polynomial, such as the well-known Laguerre’s and Jenkins–
Traub’s methods [1], the determination of all zeros of a
given polynomial by one of such methods involves repeated
deflations, which can lead to very inaccurate results due to
the problem of accumulating rounding errors when using finite
accuracy floating-point arithmetic.

Iterative methods for finding all zeros of a polynomial
simultaneously, such as the methods of Durand–Kerner and
Ehrlich–Aberth (see, e.g., [2]–[4]), appeared in literature only
in the 1960s. The simultaneous zero-finding algorithms, in
addition to being inherently parallel, have the advantage of
avoiding the polynomial deflation steps required by methods
that determine only one real root or a pair of complex roots at
a time. However, these simultaneous methods need very good
initial approximations for all the zeros in order to converge.

Due to the drawbacks mentioned above, and since tradi-
tional Artificial Neural Networks (ANN) or shallow neural
networks are well known for their capability to model data
and to find good approximations for complex problems, in
this work we try a different approach for finding real zeros of
polynomials based on neural networks, in order to assess their
potentiality and limitations in terms of efficiency and accuracy
of the approximations when compared with traditional iterative
methods for polynomial zero finding.

II. DATASETS AND METHODOLOGY

In this section, the steps taken to build a training and a test
dataset, and to train the ANNs to produce approximations for
the real zeros of polynomials are described.

Even though the neural approach proposed in this paper can
be extended to the case of approximating complex zeros of a
polynomial, the ANNs are only used here for approximating
the real zeros αi (i = 1, 2, . . . , n) of a degree n real univariate
polynomial, P (x) = a0 + a1x + . . . + anx

n, with only real
zeros, given its coefficients, as already mentioned in Section I.
The block diagram of this approach is shown in Fig. 1.

P (x)

a0

a1

...

an

ANN n

α1

α2

...

αn

Fig. 1. Flowchart showing the inputs, the processing flow and the outputs of
the proposed neural approach to polynomial root finding.

The use of a similar approach based on ANNs for finding
all (real and complex) zeros of real polynomials, and also
the application of such kind of approach to the most general
problem of determining all zeros of complex polynomials are
not considered here since they will be the subject of future
papers currently in preparation.

Regarding the neural network structure, although there is
not an exact method to determine the number of neurons that
should be in its hidden layer, there are two common ways
to do this: applying the well known Kolmogorov’s mapping
neural network existence theorem [5] or using a rule of thumb
adequate for this purpose [6].

For this work, after several tests according to these two
methods, we found that there is little variance resulting from a
change in the number of hidden neurons of the neural network.
In view of this, in this experimental study we used ten neurons
in the hidden layer for all the final tests.



In this preliminary study, we used five neural networks with
only three layers (input, hidden, and output layer), that were
trained using as input the coefficients of a set of polynomials
of degrees 5, 10, 15, 20 and 25, respectively. In Fig. 1, we
denote by ANN n the neural network that can output the real
zeros of a degree n real polynomial. Tables I and II show
the head of the datasets (with 100 000 records) that were
used with ANN 5. It is important to note here that, although
coefficients and zeros are shown with only four decimal places,
double precision values were used to generate the datasets.
To generate these datasets, it was used two algorithms to:
generates real zeros for any polynomial degree and, given a
set of real zeros, compute the respective coefficients.

TABLE I
HEAD OF THE INPUT DATASET FOR TRAINING ANN 5

a0 a1 a2 a3 a4 a5

-4593.5077 3961.1594 -155.2456 -120.6867 3.6453 1

-5351.3845 3272.8352 251.6259 -125.4805 -2.3285 1

643.6638 701.0272 133.1762 -46.9399 -7.0419 1

0.8773 51.3427 28.4148 -15.6812 -2.9906 1

-0.2478 12.5678 55.9301 -66.4759 -2.5088 1
...

...
...

...
...

...

TABLE II
HEAD OF THE OUTPUT DATASET FOR TRAINING ANN 5

α1 α2 α3 α4 α5

-9.2110 -8.9445 1.2858 6.0128 7.2117

-9.2925 -5.9211 1.5966 6.3456 9.5999

-4.2366 -1.9342 -1.5788 5.1719 9.6196

-3.1738 -1.2258 -0.0173 2.8990 4.5084

-7.4262 -0.1998 0.0183 1.0033 9.1133
...

...
...

...
...

Mathematically, an ANN is represented by a weighted,
directed graph with nodes. For this study, a multilayer per-
ceptron (MLP) feedforward neural network was chosen. The
first layer of the ANN contains the input nodes, which have no
incoming links attached to them. The last layer contains the
output nodes, and the intermediate hidden layer consists of
nodes connected to each of the nodes in the input and output
layers [7].

The well-known Levenberg–Marquardt backpropagation al-
gorithm (LMA) was used for ANN training, due to its
efficiency and convergence speed, being one of the fastest
methods for training feedforward neural networks, espe-
cially medium-sized ones. The application of the Levenberg–
Marquardt algorithm to neural network training is described,
e.g., in [8] and [9]. LMA is a hybrid algorithm that combines
the efficiency of the Gauss-Newton method with the robustness
of the gradient descent method, making one of these methods
more or less dominant at each minimization step by means of
a damping factor that is adjusted at each iteration [10].

The hyperbolic tangent sigmoid (tansig) function [11], de-
fined in (1), has been chosen in this study as the activation
function for the hidden and output layer nodes, in order to
ensure that values stay within a relatively small range and to
allow the network to learn nonlinear relationships [12] between
coefficients and zeros.

φ(x) =
2

1 + e−2x
− 1. (1)

The use of this antisymmetric (S-shaped) function for the
input to output transformation allows the output of each neuron
to assume positive and negative values in the interval [−1, 1]
(see Fig. 2). A min-max normalization method [13] was used
to scale all data into this interval.

+1

−1

x

φ(x)

Fig. 2. Hyperbolic tangent sigmoid (tansig) transfer function.

III. DISCUSSION AND RESULTS

In this section, some results obtained with this approach
are presented along with comparisons with the numerical
approximations provided by the Durand–Kerner method in
terms of execution time and accuracy.

The Durand–Kerner (D-K) method, also known as Weier-
strass’ or Weierstrass–Dochev’s method [3], is a well-known
iterative method for the simultaneous determination of all
zeros of a polynomial that does not require the computation
of derivatives, but has the drawback of requiring a good
initial approximation to each of the zeros (which must be
obtained using another numerical method) in order to converge
and produce approximations to these zeros with the required
accuracy.

Let P (x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 (an 6= 0)
be a degree n univariate polynomial with real (or complex)
coefficients. The D-K method is given by [14]

x
(k+1)
i = x

(k)
i − P (x

(k)
i )

an

n∏
j=1
j 6=i

(x
(k)
i − x(k)j )

, (2)

where i = 1, . . . , n and k = 0, 1, . . ..
The convergence order of the Durand–Kerner method is

quadratic for simple zeros but only linear in case of multiple
zeros [15].



1 2 3 4 5

−10

−5

0

5

10

n

α
n

Fig. 3. Comparison between ANN (red) and Durand–Kerner approximations
to the real zeros of a random real polynomial of degree 5.

2 4 6 8 10

−5

0

5

10

n

α
n

Fig. 4. Comparison between ANN (red) and Durand–Kerner approximations
to the real zeros of a random real polynomial of degree 10.

Figs. 3 to 7 show the comparisons, in terms of accuracy,
between the approximations to the real zeros of five random
real polynomials of degrees 5, 10, 15, 20, and 25 produced by
the ANN approach and the Durand–Kerner method.

Analysing the plots, it is clearly noticeable that our approach
produces results relatively similar to those obtained with the
D-K method. But, as the degree of the polynomial increases,
it is possible to observe a slight increase of the differences
between the approximations produced by both methods.

Table III shows the Mean Square Error (MSE) for each of
the five examples, computed as follows, where Di denotes
the approximation to the i-th zero (i = 1, . . . , n) computed
by the D-K method and Ni the corresponding approximation
obtained with our approach:

MSE =
1

n

n∑
i=1

(Di −Ni)
2. (3)

0 2 4 6 8 10 12 14 16

−5

0

5

10

n

α
n

Fig. 5. Comparison between ANN (red) and Durand–Kerner approximations
to the real zeros of a random real polynomial of degree 15.

0 5 10 15 20

−10

−5

0

5

10

n

α
n

Fig. 6. Comparison between ANN (red) and Durand–Kerner approximations
to the real zeros of a random real polynomial of degree 20.

TABLE III
MSE OF THE ANN BASED APPROACH

Degree MSE

5 0.0036

10 0.0262

15 0.6474

20 0.6213

25 0.4731

The results obtained, although limited, are very encouraging
and demonstrate the viability and potentiality of our ANN
based approach for approximating real roots of polynomials.

The results on execution time for both methods, showed
below, were obtained using a personal computer equipped with
a 7th generation Intel Core i7 processor and 16 GB of RAM.



0 5 10 15 20 25

−10

−5

0

5

10

n

α
n

Fig. 7. Comparison between ANN (red) and Durand–Kerner approximations
to the real zeros of a random real polynomial of degree 25.

TABLE IV
COMPARISON IN TERMS OF EXECUTION TIME

Degree ANN approach D–K method

5 0.004 0.010

10 0.002 0.009

15 0.005 0.011

20 0.003 0.019

25 0.005 0.026

Table IV shows that, when the degree of the polynomial
increases, the execution time with ANN remains almost con-
stant. The opposite happens with the Durand–Kerner method,
with which an increase in the degree of the polynomial implies
an increase of the execution time. Comparing the execution
times of both methods, we can observe that the execution time
required to compute the approximations to the zeros using
ANN is significantly lower than that of the Durand–Kerner
method. This result was already expected because computing
polynomial zeros using this latter method, unlike ANN, is a
pure iterative procedure.

We also assessed the capacity of the networks to generalize
the outputs to other spaces of results. For this, new datasets
were used with samples that were not employed to train the
networks. The computed outputs and targets are compared in
Table V.

Since all the MSE values presented in Table V are signif-
icantly less than one, we can infer that the networks have a
good capacity to generalize the space of results. Thus, with
some confidence, we can conclude that the networks can solve
any real univariate polynomial of the respective degree with
only real zeros.

IV. CONCLUSION

This short paper is a concise report of ongoing work about
the use of artificial neural networks for finding numerical

TABLE V
CAPACITY OF THE NETWORKS TO GENERALIZE THE OUTPUTS

Degree MSE

5 0.4087

10 0.6684

15 0.6666

20 0.4768

25 0.4766

approximations to the zeros of polynomials.
Although the results presented here are preliminary and

limited to a particular class of polynomials, namely polyno-
mials with real coefficients and only real zeros, they are very
promising and indicate the potential of this neural network
based approach for determining the zeros of polynomials.

The proposed approach seems to be quite robust and also
shows to be faster than the well known Durand–Kerner itera-
tive method for simultaneous polynomial root finding.

V. ACKNOWLEDGMENTS

Acknowledgments to the Portuguese Foundation for Science
and Technology (FCT) for their support through the Strategic
Project LA 9 – UID/EEA/50009/2013.

REFERENCES

[1] J. M. McNamee, Numerical methods for roots of polynomials, Part I.
Amsterdam: Elsevier, 2007.

[2] Bl. Sendov, A. Andreev, and N. Kjurkchiev, “Numerical solution of
polynomial equations,” in Handbook of Numerical Analysis, Vol. III,
P. G. Ciarlet and J. L. Lions, Eds. Amsterdam: Elsevier, North-Holand,
1994, pp. 625–776.

[3] M. Petković, Point estimation of root finding methods. Berlin: Springer-
Verlag, 2008.

[4] O. Cira, The convergence simultaneous inclusion methods. Bucareşti:
Matrix ROM, 2012.

[5] R. Hecht-Nielsen, “Kolmogorov’s mapping neural network existence
theorem,” in Proceedings of the IEEE First Annual International Con-
ference on Neural Networks, M. Caudil and C. Butler, Eds. San Diego,
CA: IEEE, 1987, pp. 609–618.

[6] D. Baptista, S. Abreu, C. Travieso-Gonzlez, and F. Morgado-Dias,
“Hardware implementation of an artificial neural network model to
predict the energy production of a photovoltaic system,” Microprocessors
and Microsystems, vol. 49, pp. 77–86, 2017.

[7] T. L. Fine, Feedforward Neural Network Methodology. New York:
Springer-Verlag, 1999.

[8] M. T. Hagan and M. B. Menhaj, “Training feedforward networks with
the Marquardt algorithm,” IEEE Transactions on Neural Networks,
vol. 5, pp. 989–999, 1994.

[9] M. T. Hagan, H. B. Demuth, M. H. Beale, and O. De Jesús, Neural
Network Design, 2nd ed. Stillwater, OK: Oklahoma State Univ., 2014.

[10] J. Heaton, Artificial Intelligence for Humans, Vol. 3: Deep Learning and
Neural Networks. Chesterdfield, MO: Heaton Research, 2015.

[11] P. B. Harrington, “Sigmoid transfer functions in backpropagation neural
networks,” Analytical Chemistry, vol. 65, pp. 2167–2168, 1993.

[12] D. W. Marquardt, “An algorithm for least-squares estimation of non-
linear parameters,” Journal of the Society for Industrial and Applied
Mathematics, vol. 11, pp. 431–441, 1963.

[13] K. L. Priddy and P. E. Keller, Artificial Neural Networks: An Introduc-
tion. Bellingham, WA: SPIE Press, 2005.

[14] A. Terui and T. Sasaki, “Durand-Kerner method for the real roots,” Japan
Journal of Industrial and Applied Mathematics, vol. 19, pp. 19–38, 2002.

[15] P. Fraigniaud, “The Durand-Kerner polynomials roots-finding method
in case of multiple roots,” BIT Numerical Mathematics, vol. 31, pp.
112–123, 1991.


	Introduction
	Datasets and methodology
	Discussion and results
	Conclusion
	Acknowledgments
	References

