
Efficient Use of Parallel PRNGs on Heterogeneous
Servers

André Pereira∗ and Alberto Proença∗
∗Algoritmi Centre, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal

{ampereira, aproenca}@di.uminho.pt

Abstract—Scientific code often requires very large amounts
of independent streams of random numbers with a Gaussian
distribution for stochastic simulations. This code typically uses
high statistical quality Pseudo-Random Number Generators
(PRNGs) and distribution transformation algorithm. Scientific
data analyses developed for the ATLAS Experiment at CERN
were used to test and validate our approaches to an efficient
parallel PRNG, with a Gaussian distribution in a multicore server
with a GPU accelerator. This paper evaluates the performance of
our approaches in ATLAS data analyses and presents a compar-
ative performance evaluation among different implementations
of popular PRNG algorithms available in ROOT, MKL, and
PCG libraries, on an heterogeneous compute server, showing the
positive impact of a GPU accelerator to generate large amounts
of PRN streams.

Index Terms—Pseudo-Random Number Generation, Efficient
Parallel PRNG, Scientific Computing, Code Execution Efficiency,
Performance Analysis, High Performance Computing.

I. INTRODUCTION

Scientific data analysis usually aim to test hypothesis and
theories or simulate phenomena. Computing tasks of these
applications often require sampling of measured values within
their margin of error, Monte Carlo algorithms or randomness
associated with specific scientific phenomena, which may
account for a significant portion of the overall execution time.
This need for randomness in the deterministic environment
of computer science created the demand for algorithms that
provide seemingly random numbers.

Pseudo-random number generation, PRNG, the process of
generating apparently random numbers on digital chips, is a
well studied topic, with the first computer based algorithms
being suggested as early as 1951 [1]. There are several
PRNGs available with excellent statistical quality, as well as
implementations on various programming environments with
reasonable performance. However, the generator performance
is often overlooked by non-computer scientists, which may
lead to a significant application performance degradation.

Three main aspects should be considered when selecting
a PRNG for a scientific application: the statistical quality,
which is out of the scope in this work, the computational
performance of the algorithm/implementation and the way that
a given implementation is used in the code. These aspects are
critical specially for parallel code executing on multicore and
manycore compute servers, where algorithmic and computa-
tional inefficiencies may lead to significant performance and
scalability bottlenecks.

This paper presents a performance evaluation of different
implementations of a popular PRNG, the Mersenne Twister
[2], as well as Gaussian distribution transformation algorithms,
such as Inverse Transform Sampling and Box-Muller [3],
available in popular scientific libraries. It also provides an in-
sight on the best way to use these implementations, comparing
three different approaches on two real parallel applications
with different amounts of pseudo-random numbers (PRNs),
related to the search of the Higgs boson [4]. A PRNG from
the permuted congruential generator (PCG) family [5] was also
evaluated, as the authors claim that it performs better than any
other algorithm, although it is not yet fully accepted by the
scientific community.

This paper is structured as follows: section II presents the
two case studies used to evaluate the different PRNGs and
their implementations; section III contextualises the generation
of random numbers, presenting the most popular PRNGs, the
distribution transformations and the different approaches to
use them in a parallel environment; section IV evaluates the
different PRNG implementations in the case studies; section
V makes a critical analysis of the developed work with
suggestions for further improvements.

II. PIPELINED SCIENTIFIC DATA ANALYSES

A scientific data analysis is a process that converts raw
scientific data (often from experimental measurements) into
useful information to answer questions, test hypotheses or
prove theories. When dealing with large amounts of experi-
mental data, data is read from one or more files in variable
sized chunks or datasets, and placed into an adequate data
structure.

Parallel implementations of these analyses, where concur-
rent threads process different dataset elements, are often used
in pipelined scientific data analyses, with few data dependen-
cies among dataset elements. The overall analysis performance
can be improved with an adequate balance between reading
data from disk and data processing, exploiting some pipeline
features and identifying and minimising code bottlenecks.
Among these latter, the use of PRNGs often play a significant
role in performance degradation and this is the key subject of
this paper.

High energy physics scientists at the ATLAS Experiment
[6] at CERN developed a pipelined scientific data analysis
code, the tt̄H analysis, to study the associated production of



top quarks with the Higgs boson, following head-on proton-
proton collisions (known as events) at the Large Hadron
Collider (LHC). The final state of an event is recorded by the
ATLAS particle detector, which measures the characteristics
of the bottom quarks (detected as jets of particles due to a
hadronization process) and leptons (both muons and electrons),
but not the neutrinos, as they do not interact with the detector
sensors. This final state is presented in figure 1.

Fig. 1. Schematic representation of the tt̄ system and Higgs boson decay.

tt̄H analytically computes the characteristics of the neu-
trinos with known information, to reconstruct at the end of
the data processing pipeline both top quarks and the Higgs
boson [4]. This process, known as kinematic reconstruction,
tests every combination of bottom quarks and leptons, which
are stored in a specific structure in predefined files provided
by the experiments at the LHC.

Two compute-bound variants of the tt̄H analysis were
considered as representative case studies:

• one reconstructs the top quarks and the Higgs boson, the
ttH_sci (sensors with a confidence interval), assuming
±1% accuracy of the sensors in the ATLAS detector;
it performs an extensive sampling within the 99% con-
fidence interval in the kinematic reconstruction, from
which only the best reconstruction is considered; this
version works with 1024 samples, where each requires
the generation of 30 different PRNs, to a total of 30Ki
PRNs per event;

• the other is similar to the previous, but where two
pipeline stages were replaced, ttH_scinp (sci with
a new pipeline), to perform different operations on each
data element, maintaining the same overall inter-stage
dependencies and a similar sampling of the confidence
interval of ttH_sci; this version requires less PRNs,
10Ki per event.

The PRNG used by default by these data analyses is the
Mersenne Twister implementation provided by the ROOT
framework [7], transforming the uniform distribution of the
PRNs into a Gaussian distribution by the Box-Muller algo-
rithm.

III. RANDOM NUMBER GENERATION

Random numbers are used in a wide spectrum of appli-
cations where unpredictability is required, including statistical
data sampling, scientific computing, gaming and cryptography.
Different applications often require specific properties from a
random number, for which different random number genera-
tors may be used. In the context of computer science, these
can be broadly classified as True Random Number Generators
(TRNGs) or Pseudo-Random Number Generators (PRNGs).

TRNGs are based in physical random processes to generate
random bit strings, which may have to be preprocessed to
remove possible bias. The most common example of a TRNG
is the coin toss of a symmetrical coin, where one can expect
either heads or tails with a 50% certainty. A set of coins,
or a series of coin tosses, can be used to generate a random
sequence of bits. However, coins are not perfectly balanced
and there is a small probability of landing on its side, slightly
deviating the 50-50 chances of expecting heads or tails.
Post-processing may be used to remove the bias of these
processes. There are no correlations among generated numbers
but these generators are usually slow, not suited for large scale
computing and their results cannot be replicated, which makes
debugging code harder.

PRNGs attempt to approximate the properties of truly
random numbers, such as no repetition of sequence of values
for a long period and no correlation between generated num-
bers. The generated values are not truly random as they are
determined by an initial value (seed). A proper mathematical
analysis of the generator algorithm is required to assess its
quality and if they are close enough to truly random for the
specific use that they were designed for. The main benefit
of this type of random generator is the performance, which,
depending on the algorithm, may be able to speedup with the
amount of available cores. The use of a seed also eases the
process of debugging code. With an proper algorithm, this type
of generator is mostly used for scientific applications due to
its higher performance and adequate mathematical properties.
However, most PRNGs can only generate sets of uniformly
distributed PRNs, which may require a transformation algo-
rithm to convert them into another PRN distribution.

A short introduction to the most popular PRNGs and distri-
bution transformations follows through the next subsections,
as well as the most used libraries by the scientific community.

A. Popular PRNG Algorithms

There is a wide range of algorithms to generate PRNs
currently available, each with strengths and weaknesses that
may make them best suited for different uses. The quality
of a PRNG randomness is usually evaluated by a set of
benchmarks, such as the Diehard [8] and TestU01 [9] suites.
An ideal PRNG has an infinite period, covers the entire
range of possible PRNs (usually 32/64-bit numbers), and has
no correlation between generated PRNs. Other mathematical
characteristics may be equally important, but are not as rele-
vant in the scientific community when choosing a PRNG.



The scientific community has been using several PRNG
algorithms, such as the r1279 and Wichmann-Hill PRNG
available in GSL [10], MKL [11], and NAG [12], but one
stands above all other in popularity: the Mersenne Twister
[2]. This algorithm was developed in 1997 and features a
period of 219337 − 1, passes most statistical tests, and it is
extremely fast to generate both 32 and 64-bit numbers. This
generator is also implemented in most languages and available
in most scientific computing libraries. There are limitations,
such as low throughput, but they are often overcome by
alternative implementations of this algorithm, which take
advantage of vector/SIMD instructions, GPU architectures and
multithreaded environments.

Recently, a PCG family of PRNGs was proposed [5],
claiming better statistical quality and performance, for both
single and multithreaded environments. Even though it is not
yet fully accepted by the scientific community, the PCG RXS-
M-XS 64 generator (a Linear Congruential Generator, LCG)
will be included in our performance evaluation, alongside
Mersenne Twister, in section IV, as the authors claims it is one
of the best performing PRNGs currently available. Since the
PCG generators only generate uniformly distributed numbers,
they will be paired with an efficient implementation of the
Box-Muller algorithm available in the ROOT framework [7].

B. Transforming Uniformly Distributed PRNs

PRNs are usually generated in an uniform distribution,
but other distributions may be required. Gaussian distributed
PRNs are often used in scientific computing, so having PRNG
implementations that support that functionality is crucial.

Since most algorithms only generate uniformly distributed
PRNs, this distribution may require post processing. One of
the most common algorithms is the Box-Muller transformation
[3], which generates a pair of independent Gaussian distributed
PRNs based on a set of uniformly distributed numbers. It is not
one of the most computationally efficient transformations, due
to its iterative nature and reliance on square roots, logarithmic
and trigonometric functions.

The Inverse Transform Sampling1 is a method that trans-
forms uniformly distributed numbers into any distribution,
given its Cumulative Distribution Function (CDF). The CDF
maps a PRN into a probability between 0 and 1 and then
inverts this function, providing the final non-uniformly dis-
tributed number. This number can be adjusted to a specific
mean and standard deviation afterwards, as required by a
Gaussian distribution. The lack of an analytic CDF for the
Gaussian distribution may affect the algorithm performance,
favouring other transformations such as the Box-Muller. How-
ever, current implementations, widely accepted by the scien-
tific community, use an extremely accurate approximation of
the Gaussian CDF, which is faster than most transformations.

The computational performance of both Box-Muller and
Inverse Transform Sampling methods (with the CDF approxi-
mation) will be assessed and evaluated on real scientific case

1Available at https://en.wikipedia.org/wiki/Inverse transform sampling.

studies. Other methods could be used, such as the Ziggurat
transformation [13], but are not in the scope of this work as
they are not used as often by the scientific community.

C. PRNG Libraries

Most scientific computing libraries and frameworks provide
efficient implementations of a wide variety of PRNGs.

In the context of the particle physics community, related
to the case study presented in section II, the most popular
scientific libraries are provided in the ROOT framework. This
framework only offers the Mersenne Twister PRNG with the
Box-Muller transformation and is used by default in the two
case study variants.

MKL is one of the most popular scientific computing
libraries which offers a wide range of relevant functionalities.
It features several PRNGs, from which only the Mersenne
Twister will be considered, as it would be the most likely to be
used by the scientific community. The Box-Muller and ICDF
(Inverse Transform Sampling) transformations are available in
this library and will be used to convert uniformly distributed
PRNs into a Gaussian distribution. MKL also provides the
option to generate a batch of PRNs, which will also be tested
in section IV.

The fastest PRNG available in the PCG family, the RXS-
M-XS 64 (LCG), will be coupled to the Box-Muller imple-
mentation available in ROOT to provide Gaussian distributed
pseudo-random numbers.

To offload the PRNG to the CPU accelerator the NVidia
CUDA toolkit includes a library of PRNGs, cuRAND [14]. It
provides an efficient implementation of the Mersenne Twister
algorithm and the Box-Muller transformation.

A request for a new PRN in a parallel environment can
follow several approaches:

• a single PRNG to feed all concurrent threads, where each
PRNG execution is atomic; results would not be repro-
ducible as PRNs consumed by each thread varies between
runs [15]; it does not support concurrent execution of the
PRNG;

• a single PRNG to feed each stream request using a tran-
sition function to guarantee that there are no correlations
among streams, known as leapfrog; used in the cuRAND
implementation of Mersenne Twister [16]; it supports
concurrent execution;

• a single PRNG to feed all concurrent threads with a
different a precomputed seed for each stream, causing
the generated PRNs to be equally spaced in the overall
PRN sequence, which may be slow as shown in [17],
known as splitting; it supports concurrent execution;

• an independent PRNG per compute thread initialised
with different sets of parameters; if these parameters
are not adequate, streams may not be truly independent,
as referenced in [18]; the most common and portable
approach used in scientific code.

An implementation of a PRNG on a library is as im-
portant to the overall scientific application performance as
the approach used to interact with the PRNG itself in the



code. For instance, one can generate all PRNs upfront, or
request a PRN when needed, and these approaches will have a
different performance impact depending on the application and
execution environment, specially in parallelized code where
there may be multiple threads accessing shared PRNs and/or
PRNGs.

The parallel implementation of the two variants of our case
study was modified to evaluate three different approaches to
manage the generation of PRNs:

• to call the PRNG whenever a single PRN is needed;
• to generate a batch of PRNs and store the result in a

thread private buffer; when a PRN is needed the compute
thread removes it from the buffer; when the buffer is
empty, a new batch is requested;

• to generate a batch of PRNs and store the result in a
thread private dual-buffer; while the one buffer is being
consumed, the other is being filled.

Preliminary results showed that sharing buffers among com-
pute threads degrades performance, due to contention when
accessing shared resources.

This dual-buffer approach minimises the overhead of the
PRNGs. Figure 2 illustrates this approach. In the case of the
PRNG on GPU, this approach also hides the costs of memory
transfers between the CPU and GPU memory. The case studies
that were implemented with a single thread do not need a
PRNG management thread.

Fig. 2. Dual buffer implementation in the PRNG management threads.

To generate a single PRN at a time the cuRAND PRNG was
not used, since the lack of parallelism and the overhead on
memory transfers would greatly affect the performance. In the
parallel implementations, each PRNG management thread in
the multicore devices uses a different stream to launch kernels
on the GPU and perform the memory transfers, ensuring that
concurrent management threads can simultaneously generate
and receive PRNs. Preliminary tests showed that for 24
computing threads (and associated management threads) the
GPU device was not fully utilised, meaning that it could scale
for a greater number of multicore threads.

IV. RESULTS AND DISCUSSION

The testbed used for the quantitative evaluation of the
PRNGs was a dual socket server with 12-core Intel Xeon E5-
2695v2 Ivy Bridge devices, at 2.4 GHz [19] with 64 GiB
RAM, coupled with one NVidia Tesla K20 with 2496 CUDA
cores and 5GB of GDDR5 memory (Kepler architecture).

The two variants of the case study code, as described
in section II, were ttH_sci and ttH_scinp. A k-best
measurement heuristic was used to ensure that the results
can be replicated, with k = 5 with a 5% tolerance, a min-
imum/maximum of 15/25 measurements. The multithreaded
tests used 24 cores in the Xeon multicore devices, with 1
computing thread per core. The tt̄H analyses were tested
with 128 files, each with ±6, 000 events (dataset elements).
In multithreaded tests each PRNG management thread uses
an independent PRNG per compute thread.

The ttH_sci application, which is the most PRNG in-
tensive, spent around 90% of the execution time calling the
ROOT framework PRNG, while the application that required
less PRNs, ttH_scinp, spent around 50% of the execution
time.

Figure 3 compares the execution times to generate 106

PRNs of various implementations of the Mersenne Twister
with the ROOT and MKL libraries, the former coupled with
the Box-Muller (BM) transformation and the latter with the
two available Box-Muller implementations and the Inverse
Transform Sampling (BM, BM2, and I). MKL also offers
implementations optimised to generate batches of PRNs (A).
The PCG was coupled with the Box-Muller transformation.

Fig. 3. Execution time of each PRNG to generate 106 PRNs.

This test shows that there is a small difference between
the ROOT and PCG generator, with 29 and 25 milliseconds
respectively, but the MKL batch generator using the Inverse
Transform Sampling was able to generate these numbers in 3
milliseconds. This generator will be used as the default MKL
generator on the next tests with the case studies. Offloading
the PRNG to the GPU accelerator led to a similar performance
to the PCG generator, considering PRNG initialisation, gener-
ation and memory allocation and transfers between the GPU
and the multicore memories.

Figure 4 shows the speedup of the two encoded sequential
versions of the data analyses (ttH_sci and ttH_scinp)



with the selected PRNG algorithms and the different ap-
proaches detailed in subsection III-C compared to the original
ROOT single number PRNG. For the ttH_sci application,
approaches that use a single or dual PRN buffers are noted
as SB and DB, respectively. In all Mersenne Twister PRNGs
in multicore devices, the single and dual buffer approaches
provide a slight performance improvement over generating a
single pseudo-random number at a time. Offloading the PRNG
to GPU provided speedups up to 3.8x, similar to the PCG
PRNG. This approach benefits from a dual buffer approach
the most as it hides the cost of memory transfers between
CPU and GPU devices. The ttH_scinp application has a
similar behaviour to ttH_sci, as it requires a high quantity
of pseudo-random numbers. However, the PCG algorithm has
a higher performance improvement when larger amounts of
PRNs are required, and the same applies when offloading the
PRNG into the GPU.

Fig. 4. Speedup of the sequential 2 data analyses with different PRNG
algorithms and approaches vs the original ROOT single number PRNG.

Figure 5 shows the speedup of the two 24-threaded versions
of the data analyses with the selected PRNG algorithms (one
per physical core of the Xeon devices) and the different
approaches for PRNG concurrent execution, compared to the
original ROOT single number PRNG.

For the ttH_sci, which requires the most PRNs, the use of
single or dual buffers approaches provide larger performance
improvements than on the sequential code using only the
multicore devices, specially for the PCG generator with a
speedup improvement from 42x to 48x. The offload of the
PRNG to the GPU devices, with dual buffers to hide the PRNG
execution time and memory transfers, provides a performance
improvement up to 70x over the original application with
the ROOT single number PRNG. This speedup is due to the
efficiency of the batch generation of pseudo-random numbers
on GPUs, but also due to the higher availability of the
Xeon cores since they were freed from generating PRNs,
and in a compute-bound code this makes a difference. Worth
mentioning is the fact that the GPU is not being fully used,
which means that the codes can reach larger speedups if they
require larger amounts of PRNs.

The ttH_scinp behaves similarly to ttH_sci but with
smaller speedups, up to 20x using only the multicore devices.

The use of a GPU device as a computing accelerator improves
the performance up to 10x, but the overhead of the memory
transfers and the less amount of pseudo-random numbers
required by this application restricts the efficiency of this
approach, when compared to the PCG PRNG with a dual
buffer.

Fig. 5. Speedup of the 24-threaded data analyses with different PRNG
algorithms and approaches vs the original ROOT single number PRNG.

The overhead of using the Box-Muller transformation with
the PCG PRNG accounts for only 30.1% of the overall PRNG
time for the ttH_sci application with 24 computing threads.
However, it was not possible to profile MKL as the available
libraries were not compiled with debugging symbols.

Both figures 4 and 5 prove that applications that require a
huge amount of PRNs can greatly benefit by the use of efficient
implementations of PRNG approaches. While the efficient
use of the MKL library can provide significant performance
improvements, the PCG PRNG tested was the best performing
on multicore devices by a large margin. However, this may be
considered an unfair comparison, since this PRNG algorithm
is faster than the Mersenne Twister. It is the responsibility of
the end user to assess if this PRNG should be used over other
traditional PRNGs, which are well accepted and extensively
tested by the mathematics’s community.

V. CONCLUSIONS AND FUTURE WORK

This paper presents an evaluation of the computational
performance of different versions of a popular PRNG, the
Mersenne Twister, available on MKL and ROOT libraries,
comparing different implementations available in those li-
braries. It aims to provide an insight into the best way to
use these generators with real software codes, evaluating the
performance of their implementations. A PRNG of the PCG
family was also included in this comparison with Mersenne
Twister implementations, since the authors claim it has the
best statistical quality and performance.

Two variations of a real scientific data analysis were used
as case studies: ttH_sci and ttH_scinp, both compute-
bound codes. ttH_scinp and ttH_sci require 10Ki and
30Ki PRNs per event (dataset element), with the tested dataset
containing around 800K events. The PRNGs were used in
these case studies as a single number generator, a batch



generator to a thread-private buffer, and to a thread-private dual
buffer, where one is filled while the other is being consumed.
In both single and dual buffer approaches, the PRNG is
managed by an additional thread per computing thread, so
that data processing and PRNG can be concurrently executed.

An initial test of generating 106 PRNs with a Gaussian
distribution of the various PRNG implementations available on
MKL, ROOT, and PCG libraries, showed a clear disadvantage
of using MKL PRNGs that only return a single number, rather
than a batch generator. The batch MKL generator with the
Inverse Transform Sampling method was 8x faster than the
PCG and cuRAND generators, and 10x faster than ROOT. This
implementation was used as the PRNG representative of the
MKL library in the tests with the scientific applications. There
was no significant performance difference between using GNU
or Intel compilers.

The first set of tests only used sequential versions of the
real scientific data analyses. The data analysis with the PCG
PRNG with the dual buffer approach was the faster one, almost
4x faster than the original single number ROOT generator for
the sequential version of the ttH_sci application, closely
followed by cuRAND. The code with MKL PRNG did no
beat any of the other codes. A similar behaviour is observed
for ttH_scinp, but with smaller speedups, as this code vari-
ant requires fewer PRNs. For ttH_sci with 24 computing
threads, the use of the GPU accelerator provided a speedup
up to 70x with the dual buffer implementation, due to its
faster PRNG and by freeing CPU resources to be used by the
computing threads. Code with the PCG PRNG was again the
faster one, 47x faster than ROOT, while MKL only displayed
a 11x performance improvement.

Three main conclusions can be extracted from this analysis:
• the choice of an efficient implementation of a given

algorithm is a key issue: both ROOT and MKL implement
the Mersenne Twister but MKL is, at least, 10x faster;

• a performance analysis of these algorithms should not be
made with a synthetic code, but rather with real code that
requires these generators; although this may change with
the applications, the fastest PRNGs on the initial tests
were not the best when used in our real scientific case
studies;

• the way these PRNGs are used in each application may
have a significant impact on performance: the cuRAND
dual buffer was 2.3x faster than the single buffer imple-
mentation.

This work focused mainly on the popular Mersenne Twister
algorithm, but others could benefit from this analysis, such
as cryptographycally secure PRNGs. The SIMD-oriented
Mersenne Twister [20] could also be tested, but it is expected
that an efficient SIMD implementation for Intel CPU devices
is provided by MKL, as proved by the initial benchmark
results. Other, possibly faster, distributions and distribution
transformations could be tested, such as the Ziggurat (which
was not available in the tested libraries), since the measured
Box-Muller execution time takes up to 30% of the overall PCG
PRNG execution time.

ACKNOWLEDGMENTS

This work has been supported by COMPETE POCI-01-
0145-FEDER-007043 and FCT - Fundação para a Ciência e
a Tecnologia within the Project Scope UID/CEC/00319/2013
and by Search-ON2: Revitalization of HPC infrastructure of
UMinho, (NORTE-07-0162-FEDER-000086), co-funded by
ON.2-O Novo Norte under NSRF through ERDF. The first au-
thor is also sponsored by FCT grant SFRH/BD/119398/2016.

REFERENCES

[1] J. Von Neumann, “Various Techniques Used in Connection With Ran-
dom Digits,” Appl. Math Ser, vol. 12, no. 36-38, p. 3, 1951.

[2] M. Matsumoto and T. Nishimura, “Mersenne Twister: A 623-
Dimensionally Equidistributed Uniform Pseudo-Random Number Gen-
erator,” ACM Transactions on Modeling and Computer Simulation
(TOMACS), vol. 8, no. 1, pp. 3–30, 1998.

[3] E. Golder and J. Settle, “The Box-Muller Method for Generating
Pseudo-Random Normal Deviates,” Applied Statistics, pp. 12–20, 1976.

[4] ATLAS Collaboration, “Observation of a New Particle in the Search
for the Standard Model Higgs Boson with the ATLAS Detector at the
LHC,” Phys.Lett., 2012.

[5] M. E. O’Neill, “PCG: A Family of Simple Fast Space-Efficient Statisti-
cally Good Algorithms for Random Number Generation,” Harvey Mudd
College, Claremont, CA, Tech. Rep. HMC-CS-2014-0905, Sep. 2014.

[6] T. A. Collaboration, “The ATLAS Experiment at the CERN Large
Hadron Collider,” Journal of Instrumentation, 2008.

[7] F. Rademakers, P. Canal, B. Bellenot, O. Couet, A. Naumann, G. Ganis,
L. Moneta, V. Vasilev, A. Gheata, P. Russo, and R. Brun, “ROOT.”
[Online]. Available: http://root.cern.ch/drupal/

[8] G. Marsaglia, “The Marsaglia Random Number CDROM
Including the Diehard Battery of Tests of Randomness,”
http://www.stat.fsu.edu/pub/diehard/, 2008.

[9] P. L’Ecuyer and R. Simard, “TestU01: AC Library for Empirical Testing
of Random Number Generators,” ACM Transactions on Mathematical
Software (TOMS), vol. 33, no. 4, p. 22, 2007.

[10] B. Gough, GNU Scientific Library Reference Manual. Network Theory
Ltd., 2009.

[11] E. Wang, Q. Zhang, B. Shen, G. Zhang, X. Lu, Q. Wu, and Y. Wang,
“Intel Math Kernel Library,” in High-Performance Computing on the
Intel R© Xeon PhiTM. Springer, 2014, pp. 167–188.

[12] N. A. Group and N. A. G. L. (Oxford), Fortran Library Manual.
Numerical Algorithms Group, 1988, vol. 3.

[13] G. Marsaglia, W. W. Tsang et al., “The Ziggurat Method For Generating
Random Variables,” Journal of Statistical Software, vol. 5, no. 8, pp. 1–
7, 2000.

[14] C. Nvidia, “Curand library,” 2010.
[15] D. R. Hill, C. Mazel, J. Passerat-Palmbach, and M. K. Traore, “Distribu-

tion of Random Streams for Simulation Practitioners,” Concurrency and
Computation: Practice and Experience, vol. 25, no. 10, pp. 1427–1442,
2013.

[16] M. Saito and M. Matsumoto, “A Deviation of CURAND: Standard Pseu-
dorandom Number Generator in CUDA for GPGPU,” in Proceedings of
10th International Conference on Monte Carlo and Quasi-Monte Carlo
Methods in Scientific Computing, 2012.

[17] T. Bradley, J. du Toit, R. Tong, M. Giles, and P. Woodhams, “Paralleliza-
tion Techniques for Random Number Generators,” in GPU Computing
Gems Emerald Edition. Elsevier, 2011, pp. 231–246.

[18] K. Claessen and M. H. Pałka, “Splittable Pseudorandom Number Gener-
ators Using Cryptographic Hashing,” in ACM SIGPLAN Notices, vol. 48,
no. 12. ACM, 2013, pp. 47–58.

[19] Intel, “Intel Xeon Processor E5 v2 Family: Datasheet,” Intel Corporation,
Tech. Rep., 2013.

[20] M. Saito and M. Matsumoto, “SIMD-Oriented Fast Mersenne Twister: A
128-bit Pseudorandom Number Generator,” in Monte Carlo and Quasi-
Monte Carlo Methods 2006. Springer, 2008, pp. 607–622.


