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Abstract—Combining p-values assuming independence and
uniformity can be misleading, namely since the “Mendel temp-
tation” to repeat experiments and then to use the most con-
venient p-value does exist. We discuss Mendel variables, which
are mixtures of standard uniform random variables with the
minimum or the maximum of two independent standard uniform
random variables, that can model the presence of such fake
p-values. We also consider variables X that are extremes and
products of independent standard uniform random variables in
V = min(X/Y, (1 − X)/(1 − Y )), X and Y independent
with support [0,1]. The stability result that X is a Mendel vari-
able implies that V is also a Mendel variable is useful in testing
autoregressive serial correlation vs. independence, and also to
test non-uniform Mendel vs. uniformity using computationally
augmented samples.

Index Terms—uniform random variables, Mendel random
variables, fake p-values, combined p-values, independence, uni-
formity.

I. INTRODUCTION

The classical theory of combined p-values (Pestana,
2011) [12] assumes that those are observations of independent
and identically distributed (iid) standard uniform random
variables (rvs). But uniformity is solely a consequence of
assuming that the null hypothesis is true, and this far-fetched
assumption led Tsui and Weerahandi (1989) [15] to introduce
the concept of generalized p-values, cf. also Weerahandi
(1995) [16], Hung, O’Neill, Bauer and Kohne (1997) [9], and
Brilhante (2013) [1].

On the other hand, Pires and Branco (2010) [13] shed
some light on the Mendel-Fisher controversy showing that
the suspiciously good Mendel results could be explained by
assuming that experiments were repeated and only the most
convenient result was reported, whenever the result of the
original experiment didn’t fit what the researcher wished to
establish.
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Under the validity of the null hypothesis a p-value is a
standard uniform observation, due to the integral transform
theorem. Therefore, whenever a researcher repeats the exper-
iment and reports what he considers the most convenient of
two observed p values he is in fact recording a fake p-value
with either a Beta(2,1) or a Beta(1,2) distribution, according
to whether he considers more convenient the maximum or the
minimum of the two observed values.

The combination of p-values p1, p2, . . . , pn must therefore
consider the possibility that some of those are Beta(2,1) or
Beta(1,2) fake p-values. This implies a drastic change in the
underlying distribution theory, by considering that the pk’s
are observations from random variables Pk that are mixtures
Xm of 1 − |m|2 independent uniform and of |m|2 Beta(2,1)
or Beta(1,2) random variables, that we shall call Mendel(m)
random variables and denote by Xm ∼ Mendel(m). These
mixtures have been thoroughly studied in Gomes, Pestana,
Sequeira, Mendonça and Velosa (2009) [8] in the context of
sample computational augmentation to test uniformity.

In Section 2 we discuss Mendel random variables,
Xm ∼Mendel(m), m ∈ [−2, 2], in the context of tilting the
standard uniform probability density function (thus no tilting,
m = 0, leaves the uniform distribution unchanged).

Section 3 is devoted to the investigation of extensions of
Deng and George (1992) [6] characterization of the standard
uniform random variable, using V = min

(
X
Y ,

1−X
1−Y

)
when X

and Y are independent random variables with support [0,1].
In particular we show that:

• The class of Mendel random variables is
closed for the above operation, namely
V = min

(
Xm

Xp
, 1−Xm

1−Xp

)
d
=Xmp

6
.

• More generally, if X and Y with support [0,1] are



independent, with X ∼Mendel(m),

V = min

(
Xm

Y
,
1−Xm

1− Y

)
d
=Xm(2E[Y ]−1).

Therefore V
d
≈X if E[Y ] ≈ 1. Observe that Deng

and George (1992) [6] characterization of the standard
uniform X ∼ Mendel(0) shows that in that case
V ∼ Uniform(0, 1) with Y and V independent.

When meta-analyzing p-values, it is of the utmost impor-
tance to test independence — we address in particular the
investigation of independence vs. autoregressive serial correla-
tion in Section 4 — and uniformity vs. a Mendel(m), m 6= 0,
setup.

The estimation of the proportion |m|
2 of fake p-values

is quite complex and we don’t have so far a full-proof
methodology to achieve it, cf. Brilhante, Pestana, Semblano
and Sequeira (2015) [4].

II. TILTING THE UNIFORM AND MENDEL VARIABLES

Let U denote a standard uniform random variable. When
tilting the probability density function of U with pole (0.5,1),
for m ∈ [−2, 2], we obtain a probability density function of a
variable Xm given by

fm(x) =
(
mx+ 1− m

2

)
I(0,1)(x). (1)

We shall say that Xm ∼ Mendel(m). It is obvious that
X0 ∼ Uniform(0, 1), X−2 ∼ Beta(1, 2) is the minimum of
two independent standard uniform rvs, and X2 ∼ Beta(2, 1)
is the maximum of two independent standard uniform rvs.

For intermediate values of m ∈ (−2, 0), Xm is a mixture
of a standard uniform, with weight 1− |m|2 , and Beta(1,2) rvs,
and for m ∈ (0, 2) it is a mixture of standard uniform and
Beta(2,1) rvs:

Xm =


U Ui:2

1− |m|2
|m|
2

, i = 1, 2, (2)

where i = 1 if m ∈ [−2, 0] and i = 2 if m ∈ (0, 2], and U1:2

and U2:2 denote, respectively, the minimum and maximum of
two independent standard uniform random variables.

Gomes, Pestana, Sequeira, Mendonça and Velosa (2009) [8]

used this family of variables in the context of testing uni-
formity using augmented samples, and the reason to call
them Mendel random variables stems out from the interesting
explanation devised by Pires and Branco (2010) [13] for the
outstanding performance of Mendel experiments, that Fisher
accused of being too good to be true. In fact, a possible
explanation is the repetition of experiments whose results
weren’t in accordance with Mendel theory, reporting the “best”
of the two p-values obtained.

Observe also that Xm ∼Mendel(|m|) is N(p)-max-

infinitely divisible, with N(p) =

{
1 2
p 1− p , and

p = 1− |m|2 ∈ [0, 1], since Xm may be interpreted as a

random maximum with N(p) subordinator (cf., e.g., the
work by Mendonça, Pestana and Ivette (2015) [11]). In fact,
considering a sequence of iid rvs {Wn}n∈N , identically
distributed to a standard uniform rv W and independent from
N (p) we have

Xm
d
=WN(p):N(p)|N(p)≥1.

III. ON min
(

X
Y
, 1−X
1−Y

)
WHEN X AND Y ARE

INDEPENDENT BETA OR MENDEL VARIABLES

Let X and Y be independent random variables with support
S = [0, 1], and define

V = min

(
X

Y
,
1−X
1− Y

)
. (3)

Deng and George (1992) [6] established an useful characteri-
zation of the standard uniform distribution using the random
variable V in (3):

X ∼ Uniform(0, 1)⇐⇒ V ∼ Uniform(0, 1) (4)

with Y, V independent.
Observe that X ∼ Uniform(0, 1) is the Mendel(0)

random variable, which is a Beta(1, 1) random vari-
able, or a BetaBoop(1, 1, 1, 1) of the more general
BetaBoop(p, q, π, ρ) family of random variables with proba-
bility density function given by

fp,q,π,ρ(x) = cp,q,π,ρ

xp−1(1− x)q−1(− ln(1− x))π−1(− lnx)ρ−1I(0,1)(x),

cp,q,π,ρ =
∫ 1

0
xp−1(1− x)q−1(− ln(1− x))π−1(− lnx)ρ−1dx

and p, q, π, ρ > 0, introduced by Brilhante, Gomes and Pestana
(2011) [3]. Further observe that the BetaBoop(1, 1, 1, n)
random variable is the product of n independent standard
uniform random variables.

In what follows we investigate the distribution of the random
variables V in (3) when X is a Mendel random variable, an
extreme of a sequence of independent standard uniform rvs,
or the product of independent uniform rvs.

The distribution function of V is

FV (z) = P(X ≤ Y z) + P(X ≥ 1− (1− Y )z)

= 1−
∫ 1

0

[FX(1− (1− y)z)− FX(yz)] fY (y)dy

and its probability density function in the support [0,1] is∫ 1

0

[yfX(yz) + (1− y)fX(1− z + zy)] fY (y)dy, (5)

where FX denotes the distribution function of X and fX
and fY are the probability density functions of X and Y ,
respectively.
(a) If X is the maximum of two independent standard

uniform rvs and Y is the product of two indepen-
dent standard uniform rvs, X and Y independent, then
fV (z) =

(
3
2 − z

)
I(0,1)(z).



More generally, if X is the maximum of two independent
standard uniform rvs and Y with support [0,1] has expec-
tation E[Y ], with X and Y independent, the probability
density function of V is

fV (z) = [(4E[Y ]− 2)z + 2(1− E[Y ])] I(0,1)(z). (6)

For instance, if Y is the product of n independent
standard uniform rvs, then V ∼Mendel

(
1−2n−1

2n−2

)
. If

Y ∼ Beta(p, q), V ∼ Mendel
(
2 p−q
p+q

)
, and in parti-

cular
– if Y is the maximum of n independent standard

uniform rvs, then V ∼Mendel
(

2(n−1)
n+1

)
,

– if Y is the minimum of n independent standard
uniform rvs, then V ∼Mendel

(
2(1−n)
n+1

)
,

– more generally if Y is the k-th ascending order
statistic in a sequence of n independent standard
uniform rvs, then V ∼Mendel

(
4k−2n−2
n+1

)
.

Also, observe that if the expectation of Y is 1
2 , then

V ∼ Uniform(0, 1).
Observe however that this doesn’t contradict Deng and
George characterization of the uniform, since in this (4)
case V is not independent of Y .
In this context, it seems worthwhile to quote from John-
son, Kotz and Balakrishnan (1995, p. 286) [10]:

“These results provide a partial answer to the
important problem of determining the family of
functions g for which the uniformity of U and V
implies [...] uniformity of g(U, V ) if U and V are
independent random variables having support (0,1).
(This is relevant to construct methods for improving
pseudorandom number generators to make them give
results closer to standard uniform distributions.)”

cf. also Gomes, Pestana, Sequeira, Mendonça and Velosa
(2009).
Similarly, if X is the minimum of two inde-
pendent standard uniform rvs and Y ∼ Beta(p, q),
fV (z) =

2
p+q [p+ (q − p) z] I(0,1)(z).

(b) The above results are particular cases obtained when X ∼
Mendel(m).

Theorem:
If X and Y are independent random variables with
X ∼Mendel(m), then

V = min

(
X

Y
,
1−X
1− Y

)
∼Mendel ((2E[Y ]− 1)m) .

Proof:
As fX(x) =

(
mx+ 1− m

2

)
I(0,1)(x), from

fV (z) =

∫ 1

0

fY (y)
[
y
(
mzy + 1− m

2

)
+

+ (1− y)
(
m−mz(1− y) + 1− m

2

)]
dy

for z ∈ (0, 1), we obtain

fV (z) = (2E[Y ]− 1)mz + 1− m(2E[Y ]− 1)

2
.

�

Corollary:
Let X and Y be independent random variables,
X ∼Mendel(m) and Y ∼Mendel(p). Then

V = min

(
X

Y
,
1−X
1− Y

)
∼Mendel

(
mp
6

)
. (7)

Proof:
As E[Y ] = 1

2 +
p
12 , it follows that the Mendel parameter

is (2E[Y ]− 1)m = mp
6 .

�

Observe that, as for m, p ∈ [−2, 2] we have 1 − |mp|12 ≥
max

(
1− |m|2 , 1− |p|2

)
, it follows that the uniform com-

ponent of V
d
= Xmp

6
weights more than the uniform

component of either Xm or Xp.

(c) If X ∼ Beta(3, 1) and Y ∼ Beta(n, 1)

fV (z) =
3

n+ 1

[
1− 4z

n+ 2
+

(n2 + 2)z2

n+ 2

]
I(0,1)(z).

In particular, if Y ∼ Uniform(0, 1) then
fV (z) =

(
3
2 − 2z + 3z2

2

)
I(0,1)(z); and if Y is the

maximum of two independent standard uniform rvs then
fV (z) =

(
1− z + 3z2

2

)
I(0,1)(z).

(d) If X ∼ Beta(2, 2) and Y ∼ Beta(n, 1), V has probabil-
ity density function

6

((
1− 2n

n+ 1
+

2n

n+ 2

)
z+

(
3n

n+ 1
− 3n

n+ 2
−1
)
z2
)

in the support [0,1].
For the simple cases Y ∼ Uniform(0, 1) and
Y ∼ Beta(2, 1) — i.e., the maximum of two
independent uniform rvs — we get the same result,
fV (z) =

(
4z − 3z2

)
I(0,1)(z).

(e) More generally, if X ∼ Beta(p, q) we get, fV (z) =∫ 1

0
A(z, y)fY (y)dy for z ∈ (0, 1), where A(z, y) =

ypzp−1(1− zy)q−1 + [1− z(1− y)]p−1(1− y)qzq−1

B(p, q)
.

Therefore

fV (z) =
1

B(p, q)

[
q−1∑
r=0

(
q − 1

r

)
(−1)rzp+r−1E[Y p+r]

+

p−1∑
s=0

(
p− 1

s

)
(−1)szq+s−1E[(1− Y )s+q]

]
and in particular if p = q we get fV (z) =

zp

B(p, q)

p−1∑
r=0

(
p− 1

r

)
(−1)rzr−1E

[
Y p+r + (1− Y )p+r

]
.



For p = q = 2, fV (z) =

6

[
2z

(
E[Y 2 − Y +

1

2

)
− 3z2

(
E[Y 2 − Y +

1

3

)]
,

of which examples from (d) are special cases.
If X d

=Y ∼ Beta(2, 2), E[Y ] = 1
2 and E[Y 2] = 3

10 , and

therefore fV (z) =
(
6
5 z (3− 2z)

)
I(0,1)(z).

For p = q = 3,

fV (z) =
z3

B(3, 3)

{
E[Y 3 + (1− Y )3]

z

− 2E
[
Y 4 + (1− Y )4

]
+ z

[
E[Y 5 + (1− Y )5

]}
.

If Y ∼ Beta(α, α) as E[Y k] = E[(1 − Y )k] the above
expression is very easy to compute. For instance, if
Y ∼ Beta(2, 2)

fV (z) =

(
12z2 − 120

7
z3 +

45

7
z4
)
I(0,1)(z).

(f) The probability density function of V may also be
computed conditioning on the value of X:

fV (z) =
1

z2

∫ 1

0

fX(x)[
xfY

(x
z

)
− (x− 1)fY

(
z + x− 1

z

)]
dx.

So, if Y ∼Mendel(m),

fV (z) =
1

z2

{
m

z

∫ z

0

x2 [fX(x)− fX(1− x)] dx

+
(
1− m

2

)∫ z

0

x [fX(x) + fX(1− x)] dx

+m

∫ z

0

xfX(1− x)dx
}
.

Thus if fX(x) = fX(1 − x) and Y ∼ Mendel(m) the
density of V doesn’t depend on the Mendel parameter:

fV (z) =

∫ z
0
2x fX(x)dx

z2
.

For instance, if X ∼ Beta
(
1
2 ,

1
2

)
, fV (z) =(

1

z2
+

√
z − 1 arcsinh

√
z − 1−

√
z(1− z)

πz2

)
I(0,1)(z),

and if X ∼ Beta(2, 2)

fV (z) =
(
4z − 3z2

)
I(0,1)(z).

(g) If X d
=1−X and Y d

=1− Y the expression (5) may be
simplified:

fV (z) = 2

∫ 1

0

fX(yz)fY (y)dy.

For instance:
– If X ∼ Beta(3, 3) and Y ∼ Uniform(0, 1),

fV (z) =
(
15z2 − 24z3 + 10z4

)
I(0,1)(z).

– If X d
= Y ∼ Beta(3, 3),

fV (z) =

(
75

7
z2 − 100

7
z3 + 5z4

)
I(0,1)(z).

IV. TESTING THE INDEPENDENCE OF p-VALUES

Testing independent standard uniform rvs vs. autoregressive
Mendel is relevant in the context of meta-analyzing p-values.

Let {Xm,i} , i ≥ 0 be a sequence of replicas of independent
Mendel variables Xm, m ∈ [−2, 2]. Define

Ym,i = ρ Ym,i−1 + (1− ρ)Xm,i, Ym,0 = Xm,0,

1 ≤ i ≤ n, ρ ∈ [0, 1).

If ρ = 0, the sequence {Ym,i} , i ≥ 0, is the initial one.
But if ρ > 0 there is serial correlation.
The inverse transformation, Xm,i=

Ym,i−ρ Ym,i−1

1−ρ , with

1 ≤ i ≤ n, and J =
(

1
1−ρ

)n
, leads to,

fYm,1,...,Ym,n(y) =

n∏
i=1

(
m
yi − ρ yi−1

1− ρ
+

2−m
2

)
J IS(y),

where (y) = (y1, ..., yn) ∈ [0, 1]n and

S =

n⋂
i=1

{
(y1, . . . , yn) ∈ [0, 1]n : 0 <

yi − ρ yi−1
1− ρ

< 1

}
.

As ∀i ∈ {1, . . . , n}, 0 < yi−ρ yi−1

1−ρ < 1 is equivalent to

ρ < min
1≤i≤n

min

{
yi
yi−1

,
1− yi

1− yi−1

}
=: A(y),

it follows that in the case m = 0 the joint density of Y1, . . . , Yn
is

fY1,...,Yn
(y) = J I{(y)∈[0,1]n: ρ<A(y)}(y),

and we have to solve

min
1≤i≤n

min

{
X0,i

X0,i−1
,

1−X0,i

1−X0,i−1

}
= min

1≤i≤n
{U1, . . . , Un} ,

where {U1, . . . , Un} is a sequence of independent
standard uniform random variables, and therefore
min1≤i≤n {U1, . . . , Un} ∼ Beta(1, n).

More generally assuming ρ > 0, m = 0,

min

{
Y0,i
Y0,i−1

,
1− Y0,i

1− Y0,i−1

}
=

min

{
ρ+ (1− ρ) X0,i

Y0,i−1
, ρ+ (1− ρ) 1−X0,i

1− Y0,i−1

}
is uniform with support (ρ, 1]; denote

min

{
ρ+ (1− ρ) X0,i

Y0,i−1
, ρ+ (1− ρ) 1−X0,i

1− Y0,i−1

}
= Vi,ρ,



V = min1≤i≤n Vi,ρ. V is the ML estimator of ρ, sufficient
for ρ. The likelihood function is L(ρ) =

(
1

1−ρ

)n
Iρ≤V .

Therefore, reject independence if V > 1−α1/n, the power
being 

α

(1− ρ)n
if ρ ≤ 1− α1/n

1 otherwise

.

Finally, for a general m ∈ [−2, 2],
Ym,i
Ym,i−1

= ρ+ (1− ρ) Xm,i

Ym,i−1

and
1− Ym,i

1− Ym,i−1
= ρ+ (1− ρ) 1−Xm,i

1− Ym,i−1
implying that

min

(
Ym,i
Ym,i−1

,
1− Ym,i

1− Ym,i−1

)
=

ρ+ (1− ρ) min

(
Xm,i

Ym,i−1
,
1−Xm,i

1− Ym,i−1

)
and from the independence of the Xm,i’s from the Corollary
in Section 3 we get

min

(
Ym,i
Ym,i−1

,
1− Ym,i

1− Ym,i−1

)
d
= ρ+ (1− ρ)X m2

6

.

V. TESTING THE UNIFORMITY VS. MENDEL(m)
DISTRIBUTION OF p-VALUES

Let p1, p2, . . . , pk be a sequence of p-values obtained when
testing some null hypothesis H0 in independent experiments;
the rationale for combining p-values under the validity of
the null hypothesis is well-established, for instance Fisher
(1932) [7] used −2

∑k
i=1 lnPi ∼ χ2

2k and Tippett (1931) [14]

used min
1≤i≤k

{Pi} ∼ Beta(1, k) to test the overall validity of

H0.

But under the validity of H0 may we assume that they are
observations from Pi ∼ Uniform(0, 1), or is it possible that
some of those recorded pk’s are fake p-values?

Maintaining uniformity using standard tests may be a weak
decision, resulting from the fact that there exist very few pi’s.

We can however compute

vi = min

(
pi
bi
,
1− pi
1− bi

)
, i = 1, ..., k, (8)

using for instance Beta(2,1) — and thus Mendel(2) — pseudo
random numbers bi, quite easy to generate.

If the Pi’s are uniform, Vi will also be uniform and
independent of the initial set of pi’s, otherwise if the Pi’s
are Mendel(m) the Vi’s will be Mendel(m3 ). Either way, we
shall now have an augmented set {p1, ..., pk, v1, ..., vk} to test
uniformity.

This procedure may indeed be repeated to have an aug-
mented set of size 3k, and then of size 4k, and so on. Observe
however that the Mendel parameters decay from the original
m to m

3 , to m
9 , to m

27 , and so on, and thus the generated values
will be from models closer and closer to the standard uniform,
cf. Brilhante, Mendonça, Pestana and Sequeira (2010) [2] and
Brilhante, Pestana and Sequeira (2010) [5], and therefore with
very tiny contribution to collect evidence leading to rejection
of the uniformity null hypothesis.

Thus this apparently appealing recursive procedure based on
the Corollary presented in Section 3 can decrease drastically
the power of the test, and must be used sparingly. In fact, using
Mendel pseudo-random numbers bi in the denominator of (8)
and the corollary in section 3 to artificially increase the sample
size will fatally decrease the power of the test, an apparently
awkward result in Gomes, Pestana, Sequeira, Mendonça and
Velosa (2009) [8] when these authors considered in their simu-
lations Y a Mendel random variable.

On the other hand, the Theorem in Section 3 opens new
possibilities, since we are no longer limited to use a Mendel
variable in the denominator. Indeed, if we compute

vi = min

(
pi
yi
,
1− pi
1− yi

)
, , i = 1, ..., k,

where the pseudo-random numbers yi are from Y
with a chosen E[Y ] ≈ 1, the vk will be from a
V ∼ Mendel ((2E[Y ]− 1)m) as close to the Mendel(m)
as we wish, even though the parameter m is unknown and
being subject to testing.

We performed an elementary Monte Carlo study to com-
pare the power of the Kolmogorov-Smirnov’s goodness of
fit test for the null hypothesis of uniformity for a sample
(p1, . . . , pk) and for the computationally augmented sample
(p1, . . . , pk, v1, . . . , vk), where the pi’s are observations from
a X ∼Mendel(m) random variable and the yi’s, used to
obtain the vi’s from the random variable V , are observations
from a random variable Y d

= 1−
∏10
i=1 Ui, with U1, . . . , U10

independent standard uniform random variables. Observe that
E(Y ) = 1−

(
1
2

)10 ≈ 1, and thus the Mendel’s parameter of
V is approximately equal to m, the value of the parameter of
X , which will not be known in pratice.

In Fig. 1 we show the results for the proportion of rejections
of uniformity, for the significance level 0.05. As we can
observe, the power of the test does increase as we augment
the sample from a size k to a size 2k, where k = 5, 10, 15, 20.

These results show that if there is some evidence against
uniformity in the initial sample (p1, . . . , pk), this will also
happen in the augmented sample, with the power of the test
being higher for the larger samples, as desired.

Further, we have done the same type of study for the Fisher
−2
∑k
i=1 lnPi ∼ χ2

2k test on the combined p-values to decide
on the overall null hypothesis. The results are shown in Fig. 2,
and as we can observe, we have the same type of conclusions
as those for the Kolmogorov-Smirnov’s test.
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Fig. 1. Proportion of rejections of the null hypothesis of uniformity using
Kolmogorov-Smirnov’s test (dotted line corresponds to the augmented sample
of size 2k).

VI. CONCLUSION

The random variable V defined in (3) is very versatile, and
useful namely in computational studies.

When X ∼ Mendel(m) in (3) the resulting V Mendel
variable always has an heavier uniform component than X
itself. This is drastically so when Y is also a Mendel variable,
as shown in the Corollary of Section 3, and as a consequence
using Y ∼Mendel(p) in (8) to augment samples is pointless.

On the other hand, when the available sample of p-values
is small and suspicious in the sense that some of them can
be fake p-values, the use of the more general result in the
Theorem of Section 3 to augment the sample size, requiring
only that E[Y ] ≈ 1, is sensible, since this can definitively
increase power either in testing uniformity or the combined
p-value.
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