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Abstract — We discuss a possible occurrence of annuity 
payments which follow a basic-hypergeometric progression, 
relative to the associated spot rate. We give explicit formulas for 
calculating the outstanding balance in a particular model where 
a single interest rate is replaced with a particular interest rates 
structure. 
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I. INTRODUCTION AND MAIN RESULT

An annuity is a series of payments, typically following a 
pattern, e.g., level (i.e., same every period). Annuities are used 
for calculation of loan amortization schedules, bond prices, 
and in insurance applications. If a loan in the initial amount L 
is being paid off by a series of level payments P over n years 
with annual effective interest rate of i, with payments made at 
the end of each year, then the outstanding balance of a loan at 
time k (expressed in years), where k is an integer, just after the 
k-th payment was made at the end of the (k – 1)-st year, is 

 (1) 

alternatively written as 

 

(2) 

(1) is called the prospective method of calculation of a loan 
balance, and (2) is termed the retrospective method of 
calculation (see [1]). In the above k and n are natural numbers.

 Loan repayments are not always level in practical 
scenarios.  One possible alternative is to pay l times the 
interest due the loan whose initial balance was L, where l is a 
parameter greater than 1. With an annual effective interest rate 
of i, the loan balance would be: L at time 0,  

L – L(l – 1)i = L(1 – (li – i)) 

at time 1, then 

L(1 – (li – i)) (1 – (li – i)) = L(1 – (li – i))2 

at time 2, etc., so that in each payment the balance of the loan 
is multiplied by the expression (1 – (li – i)) and with balance 
at time k equal to 

(3) 

The last step follows from the Binomial Theorem. Note that 

the terms  for j = 0, 1, …, etc., form a geometric 
progression as the ratio of two consecutive terms is always 

Recall that a positive integer x, the falling factorial is defined 
as 

 

for a positive integer n, and Note that  

Also, the q-shifted factorial is defined as 

We say that a series of the form  is a basic 

hypergeometric series if  for every n, where, s

p(q) and r(q) are polynomials of arbitrary degree in q, q is a 
parameter such that  and  assuring convergence 
of the series. 

 We use the concepts and notation of basic hypergeometric 
series (see [2]) throughout this note. We have 

Note that 
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We see that for large values of k, the expression from (3) 

representing the outstanding loan balance at time k, can reach 
the value of 0, resulting in full repayment of the loan, provided 
that 1 < l < 2 and 0 < i < 1 (a very natural assumption for 
interest rates).  

II. VARYING INTEREST RATES

A more complicated scenario occurs if we instead use a 
varying interest rate. Let us assume that the interest rate 
(forward rate, or short rate) from time j – 1 to time j is 

 This assumption is a special model for persistently 

falling interest rates, a scenario akin to the recent experience 
of developed economies such as Japan, or Germany, and, to a 
degree, the United States. We then have the following 

Proposition 1. Suppose a loan L’ is to be repaid at l times 
the forward rate (or short rate) from time j – 1 to time j given 
as Then the loan will need either a single final 
payment (a balloon payment) or an additional annuity of 
scheduled payments, written as A, to complete the loan 
repayment, since 

(4) 

Note that the proposition is stated to imply that we require 

if the original term of the payment structure was k periods. 

We note that (4) is a special case of q-binomial formula [2, 
p. 5, eq. (6.23)]:

 (5) 

Additionally, the left-hand side reduces to  when
 which may be interpreted to be the case illustrated for 

(3). 

 Proof of the Proposition 1. In order to prove our claim, we 
need to show that for arbitrarily large k, or equivalently for 

  To see this, we use the limiting case of the 
q-binomial formula (1.5):

 

and select x = l – 1, 1 < l < 2, and q = i. The terms in the series 
are clearly declining, tending to zero, and alternating from the 
first term of 1, which shows that the series converges to a 
value in the open interval (0, 1). Hence 

and 

We also note that in the case when 0 < l < 1, the value of A is 
larger than in the case when 1 < l < 2, as in this unusual 
arrangement at the end of k periods there is an outstanding 
balance greater than the original loan L’, by (4). Clearly, this 
means a final balloon payment is required.  

III. FINAL COMMENTS

If A is selected as a final payment and satisfies  
for 1 <  l  < 2, then this is the balloon payment in the traditional 
sense, as the first payment is the otherwise largest one in such 
a scenario. While it seems unlikely that the short rate  may 

decline as rapidly as  we believe that our model is still 
feasible. It may be of interest to apply our model in scenarios 
where it is believed than short rates will decline consistently 
in the future. Our main objective is to highlight the appearance 
of basic hypergeometric progression within the scope of 
financial mathematics.  
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