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General Information  

Official Language 

The official language of the conference is English. All presentations, 
including discussions and submissions, must be made in the official 
language. No translation will be provided. 
 
 

Proceedings 

Each accepted paper reaching the secretariat in time will be published in 
the proceedings. 
 
 

Opening Hours of the Registration Desk 

July  8, Monday: 08:00 – 10:00 
July  9, Tuesday: 8:00 – 17:30 
July  10, Wednesday: 8:00 – 14:00 
July  11, Thursday: 8:00 – 14:00 
 
 
Presentation 

Presentations can be done using a data projector. All authors are kindly 
asked to take their presentations in a flashdrive. All conference rooms are 
supplied with data projector, PC and internet. 
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Please, be so kind to your lungs and your colleagues by not smoking 
during the sessions and social events.  
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WELCOME MESSAGE FROM THE GENERAL CHAIR 
 
 

            
          
   

 
Mathematics is at the core of Sciences and Engineering and is still the key to modeling 
and characterizing systems and processes, whether natural or artificial. 
At ICMA we are looking for cross fertilization between areas that need Mathematics 
tools and that can provide the applications for different theoretical approaches. 
With this conference the organization expects to contribute to this development and 
foster the integration of Mathematics with application areas.  
The Organization would like to acknowledge the efforts of all the people and agents 
which have collaborated in the event. 
 
The Chairman: 
João Cabral, University of the Azores 
 
The General Chairman: 
Morgado-Dias, University of Madeira, Madeira Interactive Technology Institute and 
Interactive Technology Institute 
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Professor Dr. Jair Minoro Abe 
Jair Minoro Abe received B.A. and MSc in Pure Mathematics – University of Sao Paulo, 
Brazil. Also received the Doctor degree and Livre-Docente title fromthe same 
University. He is currently coordinator of Logic Area of Institute of Advanced Studies – 
University of Sao Paulo Brazil and Full Professor at Paulista University – Brazil. His 
research interest topics include Paraconsistent Annotated Logics and AI, ANN in 
Biomedicine and Automation, among others. He is Senior Member of IEEE. 
Professor Abe is a studious of a family of Paraconsistent Annotated Logic which is used 
to solve many complex problems in engineering. He has authored/edited books on 
Paraconsistent and related logic published by Springer Germany and other reputed 
publishers. 
He is the recipient of many awards including medals for his academic performance and 
also received many best papers awards. Professor Abe was the Editor-in-Chief of 
Publicações da Sociedade Paranaense de Matemática de 1990 – 1994. Presently, 
Professor Abe serves as Associate Editor and member of the Editorial Board of some 
journals related to the intelligent systems and applications. 
Professor Abe has supervised a number of PhD candidates successfully and presented 
a number of keynote addresses. 
He has authored/co-authored around 300+ publications including books, research 
papers, research reports, etc. 
Professor Abe’s research interests include System design using conventional and 
Artificial Intelligence techniques, Paraconsistent Annotated Logic, Human factorsin 
Aviation, Intelligent Decision Making, Teaching &Learning practices, and Cognitive 
Studies. 
 
Title: Towards Paraconsistent Engineering 
 
Abstract 

Non-classical logics have played an important role in AI and Technology. In this talk we 
present an overview of Paraconsistent Annotated Logic and some its important 
applications. Roughly such systems allow to deal with imprecise, inconsistent and 
incomplete systems of information. We show its usefulness in Biomedicine, 
Automation, Decision-making themes, among others. 

 
Ph. D. Reinhard Haas, PhD 
Energy Economics Group, Institute of Energy Systems and Electric Drives, Vienna 
University of Technology 
 
Title: Heading towards sustainable and democratic electricity systems 
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Abstract 

In the history of the electricity systems in several countries different boundary 
conditions existed and exist with respect to price formation in the market. After the 
periods of state regulation and the first phase of liberalisation of the wholesale 
markets currently the electricity system faces the third huge challenge: the change 
towards a bidirectional system, which should be more democratic and sustainable 
allowing also prosum(ag)ers – consumers with own generation units and storage – to 
play a specific role. This process is currently under way in many countries world-wide 
and in these countries also a change in the principle how prices come about is already 
under way. A major reason for this development is that in recent years the electricity 
generation from variable renewable energy sources especially from wind and 
photovoltaic power plants increased considerably. The major objective of this 
contribution is to analyze and provide insights on how to bring about a sustainable and 
competitive electricity system with even higher shares of renewable energy sources 
(RES) and an energy economically balanced system but without escalating political 
interventions. It is triggered by the current discussion on how to integrate large shares 
of variable RES but the fundamental intention goes beyond that. The major conclusion 
is that the electricity system of the future will be built on a very broad portfolio of 
technologies and demand-side options, allowing a higher number of players to 
participate in the system and, hence, heading towards a much more democratic 
approach. 
 
 
Prof. D. Maria Teresa Restivo  
Maria Teresa Restivo has a Physics degree in Solid State Physics and a Ph.D. in 
Engineering Sciences, both at the University of Porto, Portugal. Her teaching activities 
are within the Automation, Instrumentation and Control Group of the Mechanical 
Engineering Department, Faculty of Engineering, University of Porto. Her research 
activities are within the System Integration and Process Automation Research Unit 
(UISPA) in the Associated Laboratory for Energy, Transports and Aeronautics (LAETA) 
funded by the Portuguese Science and Technology Foundation and hosted in the 
Research Pillar of the Institute of Science and Innovation in Mechanical and Industrial 
Engineering (INEGI). She was Member of the Faculty of Engineering Scientific Board 
since 2001-19. She is Director of the UISPA within INEGI Currently, topics of interest of 
applied research are among the development of Medical Instrumented Devices, Smart 
Devices and Online Experimentation and the Use of Emerging Technologies in Training 
and in Education. She has participated in the creation of several non-formal learning 
activities for the Society organized at University of Porto and by its Faculty of 
Engineering and collaborated with some of those editions. She is author (co-author) of 
articles and 6 books at National and International publishers (one awarded at national 
and international levels, among different other prizes in R&D). She has been project 
co-ordinator and team member at national level and as FEUP’s partner in European 
projects. She has been involved in supervising MSc and PhD theses. She has five 
national patents and one international. Two international claims are still pending. She 
is institutional member of the Global Online Laboratory Consortium (GOLC), Co-Chair 
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of the Scientific Advisory Board of International Association of Online Engineering 
(IAOE). She is Past-President of International Society for Engineering Pedagogy (IGIP) 
and member of its Executive Committee. She was the first President of the Portuguese 
Society of Engineering Education (2010-12). She has the “ING PAED IGIP” diploma of 
International Engineering Educator. 
Title: Experimental activity, engineering students’ skills, innovation, industry and 
society 
 
Abstract 
The role of universities, and especially of their engineering schools, to plan and 
optimize their output of future professionals, represents a terribly demanding 
challenge due to our globalization era, with an unprecedented speed of change in the 
global environment. 
The traditional slow adjustment of past curricular reforms in engineering schools has 
been accelerated to provide student profiles suitable to the global industry and to 
society demands. Topics such as project management, technology evaluation, 
engineering innovation and product testing are a few examples of current student 
skills to be add to scientific and technical knowledge. 
As a simple example, I will look at the approach of the Laboratory of Instrumentation 
for Measurement (LIM) at the Faculty of Engineering of University of Porto and I will 
try to analyse its initiatives either in involving students in applied research activities 
and their outputs or in other activities within the society, with intensive gain in 
complementary skills. 
LIM has provided resources, inspiration topics and freedom to their collaborators to 
work on innovating solutions, in contact with different areas of academic knowledge 
and listening society needs, gaining skills required by any successful engineering 
professional. 
In each one practical activity, where creativity, and problem-solving where required, 
these students have engaged in higher-order thinking processes that benefits them, 
their peers, their instructors, and society. 
Different examples could be presented where LIM has been sharing with its students 
or young granted graduated members, international and national Awards, patents, 
publications, communications at international and national events, etc. 
Additionally, to this discussion, some demonstrations of smart equipment developed 
under these approaches will be performed. 
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Abstract—Companies of products and services, implement 

the six sigma methodology in several scenarios, however, 

without taking into account factors (organizational climate, 

organizational culture) that are fundamental to the success of 

the implementation in the pre-project phase and even in the 

selection of its six sigma projects. The purpose of this study is 

the development of a system that uses the Paraconsistent 

Decision Method to study the feasibility of its implementation in 

Six Sigma in a given scenario, making the decision making more 

precise. The Paraconsistent Decision Method allows the support 

of paraconsistent logic in the (pre-project) phase of choice in 

consideration of six sigma projects; we have the quest to enable 

improvement in success accuracy in scenarios where there are 

factors (organizational climate, organizational culture) critical 

of success. This article aims to contribute to the constant search 

for quality (reduction of defects) and mitigation of costs by 

companies in low-quality scenarios (defects in products and 

services). 

Keywords— Six Sigma; Quality; Paraconsistent Annotated 

Evidential Logic E; Paraconsistent Decision-Making Method. 

I. INTRODUCTION  

According to Mikel Harry, he recognizes as a six-sigma 

methodology process improvement that achieves defect 

levels of 3.4 ppm (parts per million) for critical quality 

characteristics of customers. Deming in 1990, in his vision of 

states, reinforces that in every process there is some variation 

in greater or lesser quantity; the key to improving processes 

is to attack and reduce the cause of variation systematically. 

From the tools applied logically and structured in a scenario 

that has the essential for the operation and proper 

performance of the system, in this scenario, a scene with an 

excellent organizational climate and an ethical corporate 

culture, preventing human factors can affect system 

performance. [2] 

The question is related to the fact that the organizational 

culture and organizational climate can be considered as 

unstable and ephemeral since both are mostly human and 

suffer constant changes which can affect the behavior of the 

system.  

Noticeably, or not, the most significant difficulty in the 

deployment of Six Sigma is in exercising our knowledge and 

their tools, where the system depends on both the team 

collaboration and the environment, as well.  

There are fundamentally human interactions, where these 

interactions may not suffer from the human inconsistencies 

or attitudes as vitiate the data obtained through the Six Sigma 

projects. [6].  

Problems and inconsistencies occur naturally in the 

scenario with humans, not impeding the ability of reasoning 

or human thought, the system can perform its knowledge of 

the situation, together with the humans correctly when 

finding themselves in a scenario that meets their needs 

entirely. [6] 

Given this assumption, we have sought to establish the 

feasibility of implementing the Six Sigma system, 

considering the critical success factors, the organizational 

climate, the organizational culture and the scenario. [6] 

Considering that the decision-making has always been a 

painful process for both the machine and the human, the vast 

amount of data, possibility and possible results made this task 

a problem that needed something new to resolve; it needed a 

system capable of accurately calculate and show the possible 

scenarios, a method to support decision-making. [6]. 

However, in addition to a support system for the decision, 

a precise system, capable of calculating all the 

inconsistencies of the scenario, working with a calculation 

which includes all the variables and brings.  

As a result, the feasibility of the System of choice for pre-

Six Sigma projects with the use of Paraconsistent Logic 

becomes patent, since such logic has the ability to process 

uncertain, inconsistent and even incomplete data in a non-

trivial way.  

Hence we have chosen the said logical system as the logic 

underlying our studies. 
 

II. EASE OF USE 

A. Six Sigma 

 In the mid 80’s, Six Sigma was born in the company 

Motorola. Directly and indirectly, the company, at that time, 

was spending around 10% and 20% of revenues in low 

quality. After studying the scenario, the bond between the 

experience of apparent failure on clients and, also, the 

knowledge of internal defects in their factories, Motorola 

started to be aware of the fact that the low quality obtained a 

significant impact on its profitability of primary line. [2] 
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Soon after its deployment at Motorola, Six Sigma has 

different settings that in short, were linked to efficiency in 

processes and operations, the improvement of business 

processes, achieving excellence in our processes. [3] 

However, the primary objective of Six Sigma continues to 

lead the continuous improvement of the process of 

troubleshooting methodology, being documented and 

verifiable repetition. [3] 

Another definition that can be attributed to this system, 

which is the definition of a management philosophy, which 

seeks to achieve challenging objectives considered, reduction 

of defects in products, using processes and services, through a 

careful analysis of the results obtained and data collection. [1] 

The level of the Six Sigma identification is taken into 

account as main inputs: total opportunities (number of units 

tested * possible quantities of opportunities) along with the 

number of defects found. In a given hypothesis (errors found 

in production) as shown in table 1, we considered the total of 

opportunities = 1; then we had the perception of how impotent 

means the search for the 6sigma level, which represents the 

almost total extinction of defects, and consequently to the 

almost 100% success. 

TABLE1. PROJECT SIX SIGMA WITH TOTAL      

OPPORTUNITIES = 1 AND FORMULA. 

 

Sigma 

Level 

DPMO-Defects 

per Million 

Opportunities(DPO 

x 1.000.000) 

% Error - 

Six Sigma 

% No Error 

- Six Sigma 

6 3,4 0,00034% 99,99966% 

5 233 0,02330% 99,97670% 

4 6210 0,62100% 99,37900% 

3 66807 6,68070% 93,31930% 

2 308538 30,85380% 69,14620% 

1 691492 69,14620% 30,85380% 

(Source: Author) 

 

In the Six Sigma system is used the tool DMAIC (Define, 

Measure, Analyse, Improve and Control)  

Defines: an accurate definition of the scope of the project;  

Measure: Find the focus of one or more problems in the 

scenario;  

Analyze Definition of the causes of each problem;  

Improve: Evaluate, present and calculate possible solutions 

to questions;  

Control: Ensure that the answer will keep for a long-term 

goal. [6]. 

The logical way to use the DMAIC tool, follow the steps as 

shown in figure: 

 
 

Fig. 1 – DMAIC – Source: [10] 

 
 

B. Success Factors of Six Sigma 

It can be identified as factors affecting the system: assigned 

projects and the environment in which it is being 

implemented, team preparation and top management, lack of 

structure and necessary knowledge to work with the system, 

lack of leadership and team monitoring. Add to that the 

internal processes of the company. All this leads to the 

prevention of the achievement of objectives and improvement 

in the operations and products of the company. [2] 

The leadership can be singled out as essential and 

indispensable for achieving the success of Six Sigma. 

Monitoring progress and ensuring team commitment is 

monitored through meetings. Such commitment constitutes 

one of the fundamental tasks that an active leadership and 

senior management need to realize. [2] 

In addition to the performance of the high administration, 

customer focus, the use of a structured method and the proper 

infrastructure are considered the factors of success of Six 

Sigma. [2] 

 

C. Organizational Climate 

The organizational climate can be roughly defined as the 

work environment, the corporate environment, and 

psychological atmosphere. Within this environment, it is 

easier to detect the effects of climate change on people, 

affecting mainly the performance and teamwork, both 

significantly essential pillars for the performance of the 

system Six Sigma, which detect for what reasons the 

environment is this way.[4] 

Even when, understood that the organizational climate is 

fundamental of inconsistencies and unforeseen changes, 

makes it essential for the study and the importance of balance 

in the environment that the system works mainly with human 

interactions and develops its methodology in the team. [4] 
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It makes the current mood is the motivation of the members 

which, as a result, make the environment more productive and 

satisfying, generating positive effects and animation, 

collaboration and interest. 

Changes happen all the time, preventing the balance still 

and stable. However, control the variation and seek that 

doesn't happen an extreme contrast, making the climate with 

foci of disinterest, depression, dissatisfaction, in more severe 

cases, which may lead to strikes, nonconformism, unrest 

among the members of the scenario that consequently also 

become dissatisfied with the company. [8] 

The organizational climate must be studied and thoroughly 

analyzed by the administrator, then, toil to encourage their 

decisions, and then find it necessary, interfering in the 

environment to generating positive changes and gradual 

climate and organizational culture. [9] 

D. Organizational culture 

Speak of regulatory climate makes consequent need to 

speak of corporate culture since one refers to the other. [5] 

Organizational culture is what influences and defines the 

regulatory environment. Would the reasons by which, the 

atmosphere is the climate in which is, he is a particular climate 

or not, the study of the culture, is the study of attitudes, habits, 

gestures, speech, among many others, that establish the 

environment and team collaboration among themselves. [5] 

After setting a set of norms, values, and beliefs that guide 

and normalize the behavior of particular team, becomes 

noticeable that culture is broader than the organizational 

climate. The importance of organizational culture is the 

significant influence that it has on the environment and 

people. [9] 

If the environment is detrimental to the team and the 

processes, changes must also come from the culture, essential 

points for a motivational change are communication, 

competence, commitment, continuity, and understanding. [9]. 

 

 

E.. Paraconsistent Method of Decision 

 

The Paraconsistent Method of Decision (MPD) was 

developed by Carvalho (2006) through their studies. To 

recognize the factors that influence in the enterprise, causing 

the success or failure, in other words, what can influence the 

decision of continuity of particular project or not. [7] 

It was possible to recognize that specific factors may 

present different results, as favorable conditions, in other 

cases, unfavorable terms, or else, can still submit 

circumstances indifferent to the project. [7] 

 

 

 

 

 

 

 

 

 

 

TABLE II 

EXTREME AND NON-EXTREME STATES 

Extreme States Symbol 

True  V 

False F 

Inconsistent T 

Paracomplete ⊥ 

Non-extreme states Symbol 

Quasi-true tending to Inconsistent QV→T 

Quasi-true tending to Paracomplete QV→⊥ 

Quasi-false tending to Inconsistent QF→T 

Quasi-false tending to Paracomplete QF→⊥ 

Quasi-inconsistent tending to True QT→V 

Quasi-inconsistent tending to False QT→F 

Quasi-paracomplete tending to True Q⊥→V 

Quasi-paracomplete tending to False Q⊥→F 

 

The MPD receives data from the members of the decision-

making process, as the experience, uses the so-called 

"experts" for evaluation, making them essential tools in the 

assessment of a specific issue. Moreover, through the 

information obtained, performs the calculation considering all 

the possibilities, not only of the members, as well as the 

scenario and the company. [7] 

 

 
Fig.3.Extreme and non-extreme States. Source[13] 

 
 

III. THE PROJECT 

This study proposes the development of software that can 

calculate the feasibility of pre-projects of Six Sigma system 

through the use of the Paraconsistent Method of Decision, 

aiding in the decision-making process. By using the 

Paraconsistent Method of Decision, a questionnaire is 

considered to collect the necessary data on the project.  

The user will define the experts who will provide the 

information on the project and the importance (weights) of 

each expert, making the report of a particular expert more 

relevant, in comparison with the other information from other 

experts. Once completed the questionnaire, it will be done the 

calculations with the evidence degrees, and it will be 

delivered the result of viability to the user.  

Whereas it is necessary to calculate many variables, the 

software will be responsible for providing more accurate 

information essential for the decision-making process. 

Obviously precision and accuracy of the results are 

paramount in this process, and of utmost importance for the 

scenario.  
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To reflect the joint influence of all factors with weight in 

each decision, one must take into account the Global Analysis 

and are collected by the favorable and contrary evidence 

degree.  

The calculation of the Global Analysis can be extracted by 

the weighted average of the evidence of conviction and 

uncertainties resulting from all the factors. When the weights 

in each decision are equal, the Global Analysis should be 

calculated by the arithmetic mean of the evidence of belief 

and uncertainty, becoming the geometric center.   

At this point, the study advances and reinforces the 

importance of data collection by forms filled by experts to the 

implementation of algorithms represented in flowcharts in a 

way to implement in any computational technology and that 

support the decision support by the proposed system. The 

decision-making process consists of choosing one of several 

alternatives. The unified process of annotated paraconsistent 

logic is proposed as an aid in the decision-making of 

recounting, as follows: 

 

TABLE III. UNIFIED MACRO PROCESS PARACONSISTENT 

ANNOTATED LOGIC 

 

Item Process SubProcess 

A Definition Define Proposition; Define 

Factors; Define Section; 

Define Database; 

B Transformation Generate Normalization; Use 

Evidence (favorable and 

unfavorable); 

C Calculation Calculate Maximization; 

Calculate Minimization; 

Calculate Evidence (Resultant 

Min, Resultant Max); 

Calculate Degree (Gce: 

Certainty, Gco: Contradiction); 

Calculate Globals Analysis 

(Gce: Certainty, Gco: 

Contradiction); 

D Parameterization Parametrize Limitvalues; 

E Processing Process Para-

Analyzeralgorithm; 

F Decision-

making Support 

Assists decision-making; 

 

The use of Paraconsistent Logic Annotated as support in 

decision-making in implementing six sigma projects should 

fill a significant gap in the demands for products and services 

that are based on the six sigma methodology. In this new 

proposed form, factors of climate and/or culture should be 

taken into account in the implementation of the six sigma by 

managers who decide success. 

IV. DISCUSSION OF RESULTS 

The study for the development of software capable of 

bringing the Paraconsistent Method of Decision to calculate 

the inconsistencies of the scenario and the people who are 

part, brought more reliability and accuracy to the decision-

making process, giving due importance to the calculations 

and the results obtained.  

The study necessary for the development was about the 

whole process from the pre-project the decision of 

deployment of the system Six Sigma. The approach by the 

proposed system must be based on the form that meets 

propositions able to foment data in the possibility to allow the 

use of paraconsistent logic and to obtain results that will aid 

in the whole of decision making by six sigma projects.  

Other ways of representing the paraconsistent logic with 

possible implementation in a particular programming 

language are to launch the use of the flowchart, where we 

have: 

In this stage of the flowchart, there is an excellent 

possibility of being quasi-true tending to the inconsistent, or 

inconsistent tending to the True,  

because the Gce and Gco conditions result in some 

response and when there is no possibility to answer, it follows 

in the "Y" flow to explore the possible answers offered by the 

paraconsistent logic 

 

 
Fig. 4. Paraconsistent logical flowchart: True, False, 

Inconsistent, Paracomplete. (Source: Luiz  A. de Lima). 

 

The flowchart (Fig. 4) shows that there is a  possibility of 

being quasi-true tending to the inconsistent, or quasi-

inconsistent tending to the True because the Gce and Gco 

degrees conditions result in some response. When there is no 

possibility to answer, it follows in the "Y" flow to explore the 
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possible answers offered by the structure of paraconsistent 

logic.  

The flowchart (Fig. 5) shows that there is a possibility of 

being quasi-true tending to the inconsistent, or inconsistent 

tending to the True because the Gce and Gco conditions result 

in some response. When there is no possibility to answer, it 

follows in the "Y" flow to explore the possible answers 

offered by the paraconsistent logic. 

The next flowchart (Fig. 6), there is a possibility of being 

quasi-true tending to the Paracompleteness or 

Paracompleteness tending to the True, since the Gce and Gco 

conditions result in some response. Moreover, when there is 

no possibility to answer, it follows in the stream "Z" to 

explore the possible answers offered by the paraconsistent 

logic. 

 

Fig. 5. Paraconsistent logical flowchart: Quasi True tending 

to the Inconsistent, Inconsistent tending to True. (Source: 

Luiz  A. de Lima). 

 
 

Fig. 6. Paraconsistent logical flowchart: Quasi True tending 

to Paracompletenessn, Paracompletenessn tending to the 

True .  (Source: Luiz  A. de Lima). 
 

 

V. FINAL CONSIDERATIONS 

Inconsistencies and human errors continue making the 

decision-making processes involved, as well as affect the 

production within an organization. Calculate is not enough, it 

is necessary to make these calculations automated, easy 

access to the user. Make the decision-making process more 

accurate, reliable and fast. The production and operations 

grew to become the most common errors within the activities, 

the search for the improvement of operations and the quality 

of the same, brought the study and development of Six Sigma, 

which proved to be a useful tool and produced results that 

demonstrate the improvement in processes and production. In 

addition to this study, in order to support managers for the 

implementation of the six sigma methodology, we seek 

artificial intelligence techniques and, in particular, 

parachutist logic, aid in decision making with more accuracy 

and even allowing the refuse in the implementation of six 

sigma projects, when considering factors such as climate and 

/ or organizational culture. 
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Abstract—In a previous work it was described a procedure to
obtain certain classes of spherical tilings with GeoGebra, starting
from a specific subset of spherical segments. This innovative
way of generating spherical tilings has made emerged a class
of monohedral spherical tiling by four spherical pentagons and
classes of dihedral spherical tiling by twelve spherical pentagons.
Here, we shall show how we can generate a class of a 2-
parameter monohedral spherical tilings by convex pentagons,
P∗

(C ,θ1,θ2), made of sixty congruent tiles, changing the gluing
rules of the edge-tiles, being the new ones ruled by a local action
of a particular subgroup of spherical isometries with support
on the regular spherical dodecahedral tiling. In relation to these
new classes of pentagonal tilings, combinatorial and geometric
properties will be given. All monohedral spherical tilings by
pentagons whose pentagonal prototile is of the form a.a.b.b.c
are shown. This family of spherical tilings has emerged as a
result of an interactive construction process using newly produced
GeoGebra tools and the dynamic interaction capabilities of this
software.

Index Terms—Spherical Geometry, Spherical Tilings, Geo-
Gebra.

I. INTRODUCTION

By a spherical tiling we mean a tiling of the 2-dimensional
sphere [13]. A spherical tiling is monohedral if all tiles are
congruent. Additionally, a spherical tiling is edge-to-edge if
no vertex of a tile lies in the interior of an edge of another
tile. In this paper we are interested in the study of new classes
of monohedral and edge-to-edge spherical tilings by spherical
pentagons.

The spherical tilings by congruent rigth triangles were
obtained by Yukako Ueno and Yoshio Agaoka in 1996, [22].
Later, in 2002, the complete classification of monohedral
edge-to-edge triangular spherical tilings was achieved by the
same authors [23]. They have extended the classification of
triangular f-spherical foldings, studied and characterised by
Ana Breda, in 1992, [1].

The classification of spherical tilings by triangles is not yet
completed. In fact, little is known when the condition of being
monohedral or edge-to-edge is dropped out.

The combinatorial study of spherical tilings by twelve
pentagons, with vertex valency greater or equal to three has
been also achieved, see [12] for details. Recently, a family of
spherical monohedral tiling by four congruent and non-convex
spherical pentagons has been characterised [7].

Besides the theoretical mathematical aspects involved in the
study of spherical tilings, they are also object of interest in
other areas of knowledge and in technological applications.
Walter Kohn pointed the year 1984 as the year where a big
surprise in the field of crystallography has occurred. In [15,
p. s70] he mentions: “D. Schechtman and co-workers that
reported a beautiful x-ray pattern with unequivocal icosahedral
symmetry for rapidly quenched AlMn compounds. The ap-
propriate theory was independently developed by D. Levine
and P. Steinhardt, who coined the words quasicrystal and
quasiperiodic. Even more curious was the fact that R. Penrose
(1984) had anticipated these concepts in purely geometric
[terms], the so-called Penrose tilings” [15, p. s70].

Spherical tilings and their properties have been used in
chemistry, for instance, in the study of periodic nanostructures
[11], making emerge new forms of molecular association
notably fullerenes [10], leading to a deeper study of spherical
tilings by triangles, quadrilaterals and pentagons [19]. In the
same line of reasoning other tilings including heptagons [21],
and, heptagons and octagons [20] had emerged. Applications
to new possibilities for new molecular patterns are exposed in
[8], [14], [17], [18], [24]. Nowadays, in engineering there is a
need to merge the computer aided design and computer aided
engineering into a single approach, contributing to an increas-
ing interest in studying relationships between spherical tilings
and spherical Bezier curves [9]. The knowledge of spherical
tilings can also be useful for the developed of some issues
in computational algebra [16]. The facility location problems,
spherical designs and minimal energy point configurations on
spheres [2], [3] are other fields where the study of spherical
tilings is quite useful.

In this paper we intend to extend the knowledge of spherical
tilings describing a set of spherical tilings, here denoted by
T, presenting and characterising, in detail, some subsets of
T composed by pentagonal monohedral spherical tilings with
sixty tiles, providing a continuous deformation path among
elements of this class. We also present a way to obtain all
monohedral spherical tilings by convex spherical pentagons
whose their tile configurations are of the type a.a.b.b.c.
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II. RELATED WORK

In previous work, making use of the dynamic capabilities
of GeoGebra, that have been proved to be interesting for our
research, findings about monohedral and dihedral spherical
tilings by spherical convex and non convex pentagons were
obtained.

The creation of GeoGebra tools for spherical geometry, used
initially to obtain some well known spherical tilings, provide
geometric concretization of some new spherical tilings [6].

In fact, GeoGebra gives the possibility of interacting, sim-
ultaneously, with graphic, algebraic and calculus views. It
also gives the chance to create new tools and commands. All
tools was created from the combination of existing tools or
commands. The new tool and the corresponding commands
can be used in new constructions or may be integrated in
the construction of new tools. Spherical GeoGebra tools were
constructed among the purpose to explore, among others
spherical tilings. Whiting these spherical tools we mention the
following ones: Spherical Segment, Minor, Spherical Segment,
Great, SphericalAngleMeasure, Spherical Equidistant Points,
Spherical Compass, Spherical Equilateral Triangle, Spheric-
alTriangleVertice3Angles, SphericalTriangleβABα .

Here, by way of example, we describe how the Spherical
Segment tool was constructed.

Given two non antipodal spherical points A and B, the
minor spherical segment joining them is a great circular arc of
extremes A and B. These spherical segment can be obtained
in GeoGebra using the command SphereSegmentMinor[A,B]
described below (see figure 1).

Tool Name Spherical Segment, minor
Command Name SphericalSegmentMinor

Syntax SphericalSegmentMinor[A,B]
Help Given A,B and a spherical, s, draw the spherical segment joining A to B.

Icon

Script

s=Sphere[(0,0,0), 1]
A=PointIn[s]
B=PointIn[s]
If[Distance[A,B]6=2,CircularArc[(0,0,0), A,B,Plane[(0,0,0),A,B]]]

Figure 1: Construction of the spherical segment minor tool

Observed that if we use, in the the last line of the script of
figure 1, the command Plane[(0,0,0),B,A] we get the greater
spherical segment between two points and, by these way, we
can record a different tool.

These new tools allowed us to get new families of spherical
tilings, namely, the 2-parameter family, B̂ p

q
, p,q∈N, obtained

by a global action of a subgroup of spherical isometries,
which contains the well known antiprismatic tilings see [5].
Later, using similar procedures, the one-parameter family of
tilings, P(C ,τ) with τ ∈]0,π[\{ 1

2 arccos(− 1
3 )}, was revealed,

see [7]. Recently, the one-parameter family of monohed-
ral spherical non-convex hexagonal tiling with six faces,
H(C ,τ),τ ∈

ó
0,arcsin

Ä√
6

3

ä
+ π

2

î
\{arctan

Ä√
2

2

ä
} was described

[4].
As we shall see, in the next sections, an adequate adaptation

of the previous procedures permit us to characterise a 2-

parameter class of monohedral spherical tiling composed of
sixty congruent pentagonal tiles, P∗(C ,θ1,θ2), with parameters
θ1 ∈ [0,arccos(l1)] and θ2 ∈ [0,arccos(l2)] where
l1 = 1

10

√
10
Ä√

5+5
ä

and

l2 =
α

Ä
(4−2

√
5)β−

√
2
√
(4β 2−3)(

√
5−3)

ä
3(
√

5−3)
+β 2

with α = cos(θ1) and β = sin(θ1).

III. CONSTRUCTION OF C , THE TILING GENERATION
CELL.

Consider one of the pentagonal tiles, [ABCDE], of
the regular dodecahedral spherical tiling. Without loss of
generality we may assume that the equilateral spherical
pentagon [ABCDE] of angles 2π

3 , has as vertices the points
A,B,C,D,E whose coordinates are:
A =

Ä√
15+
√

3
6 , −

√
15+
√

3
6 ,0

ä
; B =

Ä√
15+
√

3
6 ,

√
15−
√

3
6 ,0

ä
;

C =
Ä√

3
3 ,
√

3
3 ,
√

3
3

ä
; D =

Ä√
15−
√

3
6 ,0,

√
15+
√

3
6

ä
;

E =
Ä√

3
3 ,−

√
3

3 ,
√

3
3

ä
.

The centroid of the prototile is the point

Ct =

Å√
10
√

5+50
10 ,0,

√
−10
√

5+50
10

ã
and the coordinates of the

midpoint of the geodesic joining the spherical points A and
B is MAB = (1,0,0). It should be noted that Ct is determined
by the intersection of the geodesic segments MABD and AMCD

where MCD =
Ä

1
2 ,
√

5−1
4 ,

√
5+1
4

ä
.

The side lengths of the spherical triangle [AMABCt ] are:
ĂMAB = arccos

Ä√
3+
√

15
6

ä
;

ṀABCt = arccos
(

1
10

√
10
Ä√

5+5
ä)

;

C̃tA = arccos

Ç√
15(2

√
5+5)

15

å
.

Having in mind the use of an adaption to the procedure
performed in previous work and using the dynamic displace-
ment of a point P in the region defined by the spherical
triangle [AMABCt ], we end up, as we shall see, with a class
of pentagonal tilings. In fact, some elements of this class are
monohedral tilings by triangles and quadrilaterals. They are
limit cases of the pentagonal ones, see Fig.2.

Figure 2: Some elements of P∗(C ,θ1,θ2), monohedral spherical
tilings by triangles, kites, quadrilaterals and pentagons.

Consider the set
C = {X ∈ S2 : X ∈ıPA∨X ∈ P̆MAB∨X ∈ P̃Ct}, P ∈ [AMABCt ],
which represents the starting cell of the generating tilings. In
Figure 3, we illustrate a tiling obtained through the generating
procedure described bellow, with θ1,θ2 the midpoints of the
corresponding admissible intervals.

Let θ1 be an angle in [0, l1]. To obtain a dynamic variation
of P in all points of the fundamental region, [AMABCt], let us
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(a) P∗
(C ,θ1,θ2) (b) Cell C in the and planar graph.

Figure 3: Element of the monohedral spherical tiling family
P∗(C ,θ1,θ2) and one of its planar graph.

take an arbitrary point Xθ1 ∈˚�OMAbCt and consider the point
X̂θ2 obtained by the intersection of the plane z = sinθ1 with
the spherical segment ÃCt. Let P be an arbitrary point in the
spherical segment Ẋθ1 ˆXθ2. Denoted by θ2 the X̄θ1P, see figure
4.

Figure 4: Detail of construction of P in C of P∗(C ,θ1,θ2).

Thus, P is in the intersection of the planes OMABCt
and z = sinθ1 with the sphere. Consequently, the co-
ordinates of P fulfil the equations: x2 + y2 + z2 = 1;
z = sinθ1; − 1

15 x
√

15
Ä
−2
√

5+5
ä
− 1

30 y
√

30
Ä√

5+5
ä
+

1
30 z
√

30
Ä
−
√

5+5
ä
= 0; leading to 1

2 sinθ1
2
Ä
−
√

5+5
ä
+

1
2 x2
Ä
−3
√

5+9
ä
+ sinθ1x

Ä
−2
√

5+4
ä
− 1 = 0, which mean

that θ1 ∈
î
− 1

2 arccos
Ä√

5−10
15

ä
, 1

2 arccos
Ä√

5−10
15

äó
.

Having in account the definition of X̂θ2, we may conclude
that its coordinates are:

−
√

2
√

(
√

5−3)(4sin2 (θ2)−3)−2
√

5sin(θ2)+4sin(θ2)

3(
√

5−3)
;

−
√

2
√
(
√

5−3)(4sin2 (θ2)−3)+
√

5sin(θ2)+sin(θ2)
6 ;

and sin(θ2), respectively.

Accordingly, (cos(θ1)cos(−θ2),cos(θ1)sin(−θ2),sin(θ1))
was the coordinates of point P, that is one of the vertices of
the generated tiling.

IV. FROM C TO THE P∗(C ,θ1,θ2)

Let us consider the set of the following eighth spherical
rotations:

I =

®(
R(Ct,k 2π

5 )

)
k∈{1,...,4}

,R(MAB,π),R(A, 4π

3 )
,R(A2,

2π

3 )
,

R(C, 2π

3 )

´
,

where:

A2 = R(A, 2π

5 )
(
R(MAB,π)(Ct)

)
=
Ä√

3
3 ,−

√
3

3 ,−
√

3
3

ä
.

vspace0.2cmnoindent The matricial representation of the
elements of I are:

R(Ct, 2π

5 )
=

Ö √
5+1
4 − 1

2

√
5−1
4

1
2

√
5−1
4

−
√

5−1
4√

5−1
4

√
5+1
4

1
2

è
;

R(Ct, 4π

5 )
=

Ö
1
2

−
√

5+1
4

√
5+1
4√

5−1
4

−
√

5−1
4 − 1

2√
5+1
4

1
2

−
√

5+1
4

è
;

R(Ct, 6π

5 )
=

Ö
1
2

√
5−1
4

√
5+1
4

−
√

5+1
4

−
√

5−1
4

1
2√

5+1
4 − 1

2
−
√

5+1
4

è
;

R(Ct, 8π

5 )
=

Ö √
5+1
4

1
2

√
5−1
4

− 1
2

√
5−1
4

√
5+1
4√

5−1
4

−
√

5−1
4

1
2

è
;

R(A, 4π

3 )
=

Ö √
5+1
4

−
√

5−3
4

√
5+1
4

−
√

5−3
4

√
5+1
4

√
5+1
4

−
√

5−1
4

−
√

5−1
4 − 1

2

è
;

R(MAB,π) =

Ñ
1 0 0
0 −1 0
0 0 −1

é
;

R(A2,
2π

3 )
=

Ñ
0 1 0
0 0 −1
−1 0 0

é
;

R(C, 2π

3 )
=

Ñ
0 0 1
1 0 0
0 1 0

é
.

Consider:
C 0 = C (graphically represented in figure 3(b)),
C 1 =

⋃4
i=1 R(Ct,i 2π

5 )(C
0),

C 2 = R(MAB,π)(C
1),

C 3 = R(A, 4π

3 )(C
2),

C 4 = R(A2,
2π

3 )(C
3),
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C 5 = R(C, 2π

3 )(
⋃4

i=1 C i) and

C 6 = R(C, 2π

3 )(C
5).

Under these conditions the set
⋃6

i=0 C i define the spherical
class of tilings P∗(C ,θ1,θ2).

Besides each tile has internal angles of the form
( 2π

3 ,∗i, 2π

5 ,∗i,∗i), where the ∗i, i ∈ {1,2,3}, are uniquely
determined for each value of θ1,θ2.

The pentagonal tilings in P∗(C ,θ1,θ2) are composed by sixty
pentagonal congruent tiles, and so the sum of the internal
angles of each tile is 13π

5 .
Thus, given the coordinates of the points A, P, MAB and Ct,

we may compute the angle measure defined by them:

cos
Ä÷APMAB

ä
=

1
12

(sin(θ1+θ2)− sin(θ1−θ2))Ä
(cos(θ1)cos(θ2)

Ä
−
√

3+
√

15
ä

+cos(θ1)sin(θ2)
Ä
−
√

3−
√

15
ää

+
1
6

sin2 (θ1)
Ä
−
√

3−
√

15
ä

;

cos
Ä◊�MABPCt

ä
=− 1

10
cos(θ1)2 sin(θ2)2

√
10
Ä√

5+5
ä

− 1
10

sin(θ1)2
√

10
Ä√

5+5
ä

+cos(θ1)cos(θ2)sin(θ1)
1

10

√
10
Ä
−
√

5+5
ä

;

cos
Ä‘CtPA

ä
=− 1

15
cos(θ1)2 sin(θ2)2

√
15
Ä

2
√

5+5
ä

− 1
15

sin(θ1)2
√

15
Ä

2
√

5+5
ä
+ cos(θ1)cos(θ2)sin(θ1)×

1
30

√
30
Ä√

5+5
ä
+ cos(θ1)sin(θ1)sin(θ2)×

1
15

√
15
Ä
−2
√

5+5
ä
+ cos(θ1)2 cos(θ2)sin(θ2)×

1
30

√
30
Ä
−
√

5+5
ä
,

and so all the internal angle measure of the tile are known.

The dynamic process described above allow us to charac-
terise all the elements of the family P∗(C ,θ1,θ2). First, we note
that there are elements in this family which do not correspond
to pentagonal spherical tilings. In fact, only angles, θ1 and θ2,
taken in the interior of their admissibility intervals correspond
to pentagonal monohedral tilings, being these composed by
sixty spherical tiles (as we can see one example in Fig.
3(a)). The remaining cases correspond to monohedral spherical
tilings by triangles and quadrilaterals.

The elements of P∗(C ,θ1,θ2) with θ1 ∈ ]0, l1[ and θ2 ∈ ]0, l2[
belong to a family of a two parameter not yet described in the
literature.

Any element of this family is composed by sixty 60 spher-
ical pentagons, with 150 edges and 92 vertices, 12 of them of
valence 5 and the others 80 vertices of valence 3, and have
the tile configuration y.y.r.r.(2b).

The process here described can be applied generate spher-
ical tilings supported in the others regular spherical tilings, i.e,
tetrahedral, T ; hexahedral, H ; octahedral, O; and icosahed-
ral, T .

We get three monohedral spherical tilings by pentagon,
P∗
(CK ,θK

1 ,θK
2 )

where K ∈ {T ,H ,O,I }. For each CK , we
proceed changing the gluing rules of the edge-tiles according
a local action of particular subgroups of spherical isometries
related with the corresponding regular K spherical tiling. It
should be note that: P∗

(CD ,θD
1 ,θD

2 )
and P∗

(II ,θI
1 ,θI

2 )
defines

the same families of tilings; P∗
(CH ,θH

1 ,θH
2 )

and P∗
(CO ,θO

1 ,θO
2 )

defines the same families of tilings .

P∗
(CT ,θT

1 ,θT
2 )

, f → 12,v→ 83.123 P∗
(CH ,θH

1 ,θH
2 )

, f → 24,v→ 64.(8+24)3

P∗
(CO ,θO

1 ,θO
2 )

, f → 24,v→ 64.(8+24)3 P∗
(CI ,θI

1 ,θI
2 )

, f → 60,v→ 803.125

Figure 5: Elements of P∗
(CK ,θK

1 ,θK
2 )

,K ∈ {T ,H ,O,I }.

These procedures led to the characterisation of three class of
monohedral pentagonal spherical tilings, where all the tilings
have the tile configuration y.y.r.r.(2b), whose some geometrical
and combinatorial characterisation are specified in figure 5.

V. CONCLUSION

Here, we have shown how a suitable adaptation of a
procedure for generating spherical tilings starting from a cell,
composed by three spherical arcs, and described in previous
work, with support in the regular dodecahedral spherical tiling,
led to a two parameter family of pentagonal monohedral tiling
of the sphere with sixty faces. This approach was possible
by mean of computational tools. We also show some of the
results of the adaptation of the procedure here described in
order to present all the monohedral pentagonal tiling with the
tile configuration y.y.r.r.(2b). Next step will be the detailed
description of these new pentagonal tilings.
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This work highlights the potential of the geometric approach
supported by a dynamic geometry software for the search
and analysis of spherical tilings, revealing connections that
a combinatorial approach would not have.
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Abstract—With the help of a proper parameter spacePa,b,
defined for the class of real rational maps (1), in this work, we
define lines in the form b = ϕ(a), that will be used as roads in
a traffic map, which will contribute to a better understanding
of their behaviour, under iteration. This family of maps have a
very interesting dynamic, where we can confirm the existence
of several bifurcation types. Using tools, from Combinatorial
Dynamics, Entropy and Bifurcation Analysis, with common use
in Low Dimension Dynamical Systems studies, it is shown that
these roads clearly depend on the relationship between variables
a and b, highlighting some important aspects of this relationship,
which help to describe the dynamics of map (1).

fa,b(x) = 1 +
b− a

x2
− b

, b < a, b < 1 (1)

Index Terms—Real Rational Maps, Iteration, Bifurcation

I. I NTRODUCTION

Discrete time dynamical systems generated by iterated maps
appear in many scientific areas, such as economics, engi-
neering, and ecology. To understand better the behaviour of
these systems is used, frequently, some results derived from
bifurcation analysis, establishing some order in chaotic events,
classifying possible behaviours, whose may explain compu-
tational simulation results, with different values of control
parameters.
The notion of iterated function system was introduced by M.
F. Barnsley and S. Demko, in 1985, but the concept is usually
attributed to Joan P. Hutchinson. According Edward R. Vrscay
the idea is traced further back to the works of Leggett and
Williams, who studied fixed points of contractive maps finite
composition. Iterated function systems are interacting with
many fields of mathematics. For example, they are useful for
creating fractals, learning models, interesting probability dis-
tributions and analysing stochastic processes with Markovian
properties.
In this paper it will be presented some numerical and geometri-
cal results, supported by high and extensive analytical calculus,
but not fully shown in this paper, due to size and complexity
usually found in real rational maps, under iteration.
Let fn

a,b(x) be then− iterate of fa,b, i. e., the map compo-
sition, by itself,n− times. The sequence

{xi}i=0,1,...,n = {x0, x1, ..., xn}

This paper was produced with support from the Portuguese Foundation for
Science and Technology, project UID/MAT/04674/2019.

is the orbit of x0, under iteration byfa,b. It means that
xi+1 = fa,b(xi), i = 0, 1, . . . , n. Each solutionx = ξ of
fn
a,b(x) = x, using fixed parametersa = a0 and b = b0,

is designated fixed point of ordern for fa0,b0 . These values,
under iteration byfa0,b0 , are invariant. They can be classified
as attractors if|f ′

a,b(ξ)| < 1, repulsors if|f ′
a,b(ξ)| > 1 and

neutral if |f ′

a,b(ξ)| = 1. The solution set off ′

a,b(x) = 0 is the
critical set offa,b, where we will include the valuesx = ±∞.
In this family of maps (1), by a simple graphic observation,
we can see thatlim

x→±∞
fa,b(x) = 1. So, under iteration offa,b,

the values present in some neighbourhood of infinite, have
the same behaviour of the valuex = 1, under iteration. It is
now obvious that the singularities offa,b, x = ±

√
b, under

iteration, will have also the same behaviour of the valuex = 1,
sincefa,b(±

√
b) = ∞ ⇔ fa,b(fa,b(±

√
b)) = fa,b(∞) = 1, so

we will use the orbitx = 1 to represent the orbit ofx = ±∞
andx = ±

√
b. If, by any chance, the orbit ofx = 1 would

be periodic then we say that the orbits of±∞ and±
√
b are

eventually periodic.
In classical low-dimension dynamics, as the study ofm-modal
maps under iteration, classified as interval maps [1] and [4],
the analysis of critical orbit set is enough to have a full
description of the map dynamics [4]. And the most important
orbits, in continuous maps, are the ones with period3, due to
its connection to Sharkovsky’s theorem, as shown very deeply
in chapter 2 of [1].
Since our map (1) is discontinuous, and real, in the last decades
small attempts where made to develop some consistent theory
similar to the one developed to continuous interval maps in [4],
but so far with no any relevant progress. We have excellent
contributions from James Yorke [5] and Laura Gardini [6],
among others referenced by these authors, attempts to mini-
mize the damage caused by the presence of singular values,
but the full description of the real rational maps dynamics
is a stronghold very hard to conquer, even with the use of
emerging computational tools of 21st century allied to the
newest analytic tools. But one idea is clear, if we cannot
deal very well with the singularities, at least we can use the
continuous part of the function and make some restrictions to
the dynamical domain and compare the findings, building a
Scottish quilt of knowledge that can be close to that should
be the full dynamical description of the real rational map.
Since f ′

a,b(x) = 0 ⇔ x = 0 and lim
x→±∞

f ′

a,b(x) = 0 then

the critical set offa,b will be Λ = {0,∞}. Assuming that
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the critical orbits are the ones produced by the critical values,
and following the road of discovery like Milnor and Thurston
did in [4], for continuous maps, then we will try to reveal
the dynamical secrets of this class of mapsfa,b. To do that
we used some computational work, and construct the proper
analytical tools to prove some results. Numerically, we create
a process to identify regions inPa,b, defined as the parameter
space forfa,b, where, for some fixeda = a0 andb = b0 we can
find periodic orbits forx = 0 andx = 1. To do an organized
search we will study the map’s behaviour following the lines
b = ϕ(a), the paths or roads, witha ∈ I (see section III).
We define the setΣ = {(a, b) ∈ I : fn

a,b(0) = 0 ∨ fn
a,b(1) =

1, n ∈ N}, where to any fixed pair(a, b) = (a0, b0), we can
find roads in the parameter setPa,b, such the mapfa0,b0 will
have periodic super-stable orbits, under iteration. Sincewe will
work, mostly, with the geometric view of the orbits, it is usual
to call them trajectories.
Studying the geometry ofPa,b andΣ, it is our goal to show
that fa,b, as a piecewise differentiable map, presents some
behaviour similar to the one exhibited by bi-modal and one-
modal class of maps studied by Milnor and Thurston [4],
among so many other authors, that followed their work. To
fulfil the goal, we use techniques derived from combinatorial
dynamics, such as Bifurcation Analysis, Entropy Study and
Interpretation of Lyapunov Exponents value [3], to study the
relation between periodic orbits and the behaviour of map (1)
under iteration.

II. LYAPUNOV AND BIFURCATION THEORY

Chaotic behaviours are characterized by a high sensitivityto
initial conditions: Starting from arbitrarily close to each other,
the trajectories rapidly diverge.
The map (1) is discontinuous, then the results, already known
for continuous maps, cannot be applied to this map’s family,
but we can use some of them as a start point to understand
its dynamics. One of these tools are the Lyapunov Exponents,
integrated in a very large field of research known as Lyapunov
Theory. The connection between this Theory and the study of
the dynamics of real maps is, undoubtedly, very important,
since help to understand the connection between analytic
results and computational. The power of Lyapunov Theory
comes from the fact that it is used to make conclusions about
the dynamics of a system, without finding exactly the values of
the trajectories, saving computational time and endless analytic
efforts. Young [7] and Katok [3] have a splendid description
of use and properties of Lyapunov exponents.
For a functionf(x), each trajectory{xi} have the Lyapunov
Exponent defined as

λ = lim
n→∞

1

n

n−1
∑

i=0

ln

∣

∣

∣
f

′

(xi)
∣

∣

∣
(2)

Sinceλ is the same for allxi on the basin of attraction
of ξ, if ξ is an attractor, the sign ofλ defines the attractor
type. If λ < 0 we are in the presence of limit cycle or
stable fixed points; Ifλ > 0 we have chaotic attractors.

For bifurcation values of the function, we will haveλ = 0,
andλ → ∞ for values wheref(x) have super stable orbits.
Lyapunov Exponent are also used to calculate an estimative to
the Topological Entropy, from which we can obtained detailed
information about the orbit behaviour. See [7] for a more
complete description.
The bifurcation of a function is characterized as being a
splitting of a specific orbit, occurring with the modification
of a parameter that controls the function. For example, for
fλ(x) = λx(1 − x), with the change of parameterλ, we will
assist to a double period bifurcation, with periodic orbitn = 2
splitting ton = 4, then goesn = 8, and so on. But it can occur
also the splitting fromn = 1 to n = 3, thenn = 7, and so
on, like the maps studied by Laura Gardini in [6].
The map (1) have parametersa andb, and for certain values of
the pair(a, b), the structure of fixed points and periodic orbits
changes. In the same way as the maps with only parameter,
we define this change as a bifurcation. The graphic, where
we can analyse, geometrically, the period variations regarding
the parameter change is called Bifurcation Diagram. To build
the bifurcation diagram of (1) we need to makeb = ϕ(a),
in order to transformfa,b in a function of one parameter
only. There are many types of bifurcations present in a simple
bifurcation diagram forfa,ϕ(a), and we will explore it in
section (IV), as we can see, for example, in figure 4. We
can find saddle-node bifurcations, occurring when a pair of
fixed points appears in a region where there were none, with
one stable fixed point and one unstable fixed point;period-
doubling bifurcation, characterized by the loss of stability of
the original fixed point, the period doubles, and the nature of
attractor changes;border-collision bifurcations, as described
in detail by Helena E. Nusse and James Yorke in [5] and
complemented by Roya Makrooni, Farhad Khellat and Laura
Gardini in [6] is mainly characterized by a suddenly change of
one fixed point attractor in am-piecechaotic attractor. Also,
we can find the reverse bifurcation phenomena.

III. PARAMETER SPACEPa,b FORfa,b(0).

To study the behaviour, under iteration, of the map (1)
we need some simple results about the variables domain, in
order to build a parameter space where we will get useful
information. In [2], we can found complementary data about
the map (1).
We establish the domain for the parametersa andb as the set

I =

{

(a, b) ∈ R
2 : 1− 2

√
3

9
< a < 1 +

2
√
3

9
, b < a, b < 1

}

.

As we can check in [4], due to the Sharkovskii theorem, the
orbits of period n = 3, of the critical points, assumes in the
dynamics of a continuous map a very important role, since
their existence in continuous maps assures the existence ofall
others orbits. So, will use, as reference, the period 3 orbitof
the critical valuesx = 0 andx = 1.
As explained before, whenever a value, under iteration, falls
in a neighbourhood of somefa,b discontinuity, the forward
image will be∞, and the next iteration will be trapped in the
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orbit of x = 1. For our map (1), the linesb = ϕ(a), where this
phenomena occurs, will play an important role in the function
dynamics, since the computational calculus will tend to be
unstable near these lines. Solving the equationf3

a,b(1) = 1,
we will have two possible lines:b = a, that reduces the map
to a trivial one, and

b =
1

3

(

2−
(

2

ω

)1/3

−
(ω

2

)1/3
)

,

with ω = −25+54a−27a2+
√

−4 + (−25 + 54a− 27a2)2.
For 4+(25− 54a+ 27a2)

2
= 0, will havea = 1

9

(

9± 2
√
3
)

.
These values are the ones used to set the range fora in I.
We define the parameter space

Pa,b = {(a, b) ∈ I : fn
a,b(x) = x, n = 3, 4, . . .},

represented in figure 1.

Fig. 1. Parameter spacePa,b with n < 120 for fn
a,b

(x).

It appears to have fractal properties, since we can see a
process ofself-similarity. Each one of the big black regions,
after excluding the upper-left black region whereb > a, are
sets, designated byn-Bulbs in [2], geometric neighbourhoods
of all solutions linesb = ϕ(a) of the equationfn

a,b(0) = 0,
which each pair(a, b) produces maps with critical super-stable
orbits with periodn.
We can, inPa,b, identify important lines, see figure 2, where
the solution lineb = ϕ(a) of f3

a,b(0) = 0 is coloured in
white; the solution off3

a,b(0) = −
√
b in yellow; the solution

of f3
a,b(0) =

√
b in green and the solution off3

a,b(1) = 1 in
blue.

Fig. 2. Relation betweenPa,b and the linesb = ϕ(a) in f3

a,b
(p1) = p2,

with p1, p2 ∈ {0, 1, ±
√
b}

Definition 1. Let the solution lineb = ϕ(a) of the equation
f3
a,b(1) = 1, such that all the points are included inI. This

line is the border of a region that we will define as the locus
Lf .

Lf will help us to understand the diagrams in the next
section.

IV. B IFURCATIONS EXPLORATION

Now, we will transform our map (1) in one parameter map.

Let b = ϕ(a), with (a, b) = (a, ϕ(a)) ∈ Pa,b with ϕ ∈ C1,
then we will have

fa,ϕ(a)(x) = fa(x) = 1 +
ϕ(a) − a

x2 − ϕ(a)
=

x2 − a

x2 − ϕ(a)
(3)

With this transformation we can start to explore the dy-
namics of (1) in the interior ofLf , analysing the bifurcation
diagrams of the critical orbitx = 0. We choose in this paper to
explore just the cases whereϕ is a straight line with positive
slope.
We can see in figure 3 the lineb = ϕ(a) = −1.14723 +
2.09677a, in cyan, crossing all the basins of attraction of
the super stable lines, and analysing the correspondentfa
bifurcation diagram, figure 4, we can identify at least one
value a = 0.76, where the orbit of the critical pointx = 0
will produce a periodicn = 3 super stable orbit.
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Fig. 3. Example lineb = −1.14723 + 2.09677a

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

-1

0

1

2

3

a

Fig. 4. fa bifurcation diagram,ϕ(a) = −1.147+2.096a, 0.57 < a < 1.43

Also we can observe intervals of stability forfa and others
where chaos prevail. For certain intervals of the valuea we can
identify phenomena like reverse bifurcations, double period
bifurcations and, hidden among chaos windows, saddle-node
bifurcations. Using Lyapunov Exponent diagram, figure 5 we
can calculate the maximum value of topological entropy for
0.80 < a < 0.85, that is, approximatelyh = 0.409038.

0.70 0.75 0.80 0.85 0.90 0.95 1.00

-1.0

-0.5

Fig. 5. fa Lyapunov Exponents,ϕ(a) = −1.147 + 2.096a

The analysis of the bifurcation diagram is not sufficient
to produce a deep study about the dynamics of function (3).
Hidden, in intervals of supposed chaos, we can observe some
regularity, like it happens in classic bifurcation diagrams for
continuous maps. Also, to explore analytically the dynamics

of fa, it can be a very hard process due to the nature
of rational maps iteration. Nowadays, most of the results,
arising from the low dimension dynamics study, for real
rational maps, are initial triggered by computational numeric
calculus in association with a very deep knowledge of Implicit
Theorem application. To avoid the analytic difficulties created
by the conditions necessary to apply the Implicit Theorem,
we show that the combined use of Lyapunov Exponent and
Bifurcation diagrams, can be a great tool, providing a good
initial approximation, on the search for intervals of chaosor
regularity offa.
As an example, letϕ(a) = 0.02025 + 0.26625a, the straight
line in figure 6, and the bifurcation diagram in figure 7, that
shows the behaviour of the orbit ofx = 0, under iteration of
fa, with 0.57 < a < 1.43.

Fig. 6. ϕ(a) = 0.02025 + 0.26625a crossingPa,b

0.6 0.8 1.0 1.2 1.4

-5

0

5

10

a

Fig. 7. Bifurcation diagram forfa with ϕ(a) = 0.02025 + 0.26625a,and
0.57 < a < 1.43

Close to the valuea = 0.8925 we have a super stable
orbit of the critical point and ata = 1.377 we have a border
collision bifurcation. But what happens ata = 0.6425? Is it
another border collision bifurcation? If yes, it is not so visible.
Merging both diagrams, bifurcation an Lyapunov Exponent,
we have the figure 8. As mentioned in section II, ifλ → ∞
then we have the presence of super stable orbit, and that is
the case ofa = 0.6425, anda = 1.377, where the orbit of the
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critical pointx = 0 falls in an super stable orbit of the other
critical point x = ∞. We can observe that these two values
corresponds to the intersection ofϕ(a) with the solution line
of f3

a (1) = 1. The only super stable orbit ofx = 0 is at
a = 0.8925, easily identified because it corresponds to the
intersection ofϕ(a), with the solution line off3

a (0) = 0, see
figure 6. Also, in figure 8 we can see, for1.2 < a < 1.3, that
we will have at least one value whereλ = 0, revealing a region
where we will find another bifurcation point, and it must be
a period doubling or saddle-node bifurcation. So the points
a = 0.6425 and a = 1.377 are border collision bifurcation
points of x = 0, where the orbit undergoes in super stable
orbit of x = ∞.

0.6 0.8 1.0 1.2 1.4

-5

0

5

10

a

Fig. 8. Lyapunov Exponents (in red) and bifurcation diagram(in blue) for
fa with ϕ(a) = 0.02025 + 0.26625a, 0.57 < a < 1.43, with vertical lines
in the position where (2) assumes infinite values

Graphically, a border collision can be wrongly identified
as a saddle-node bifurcation, but with the help of Lyapunov
Exponents we can avoid this graphic confusion. Let’s take
another example, zoomingPa,b to the region represented in
figure 9.

Fig. 9. Lineϕ(a) = 0.23353 + 0.13721a crossingPa,b

0.8 0.9 1.0 1.1 1.2 1.3

-4

-2

0

2

4

6

8

a

Fig. 10. Lyapunov Exponents (in red) and bifurcation diagram (in blue) for
fa with b = 0.23353 + 0.13721a, 0.786 < a < 1.3844

Selectingϕ(a) = 0.23353 + 0.13721a we get a interesting
fa dynamic, as presented in figure 10. We have the presence
of a super stable orbit, ata = 0.826, with λ = ∞, a double
period bifurcation, ata = 0.6425, with λ = 0, and most
important a bifurcation ata = 1.284, which at first glance,
probably could be identified as a border collision bifurcation,
but sinceλ = 0, at that position, then it must be a saddle node
bifurcation, as also happens ata = 1.35, occurring the border
collision bifurcation ata = 1.38.

V. RESULTS

UsingPa,b as a guide map, we can find the roadsb = ϕ(a),
construct the bifurcation diagram, the Lyapunov Exponent
diagram and write conclusions about the dynamic of map (1),
related with the parametera change. Clearly, the association
between these two graphics is a powerful tool, allowing the
researcher collect precious information, and since the hunt for
some properties and new kind of bifurcations can be done,
using numeric computational calculus, they can be the trigger
for new ideas and a good start to initiate the analytic proof of
the graphically observed phenomena.
As we show, in this work, only using the fundamentals of
discrete dynamical systems, we can discover very easily, some
special regions inPa,b, where we can find, forfa, well known
behaviours, observed on the dynamics of continuous logistic
maps and also in piecewise continuousm-modal maps, but
also other behaviour not so common. We also remember that
we focused our attention inLf , and due to its fractal nature
and self similarity it is easy to see that all the phenomena
described graphically in last section for period 3 orbits also
happens for all other periodic orbits.
Let’s examine figure 11.

ICMA19 - 2nd International Conference on Mathematical Applications

17
ISSN 2184-3945



Fig. 11. Comparison betweenPa,b and the bifurcation and Lyapunov
Exponents diagrams for the lineb = ϕ(a) = 0.0.01972+0.3404a, with the
presence of a reverse bifurcation with saddle node bifurcations at its centre.

We useϕ(a) = 0.01972+0.3404a and signalize the values
a ∈ {1.088, 1.122, 1.2074, 1.2302, 1.3582} with arrows. In
11 we enhance the region designated bySNR, in which
borders the valuesa produce a saddle-node bifurcation. Indeed
this kind of bifurcation will happen fora = 1.2074 and
a = 1.2302. Also, we enhance the presence of a region
designated byRBR where the valuesa on its south border
will be the responsible for the appearance of a double period
bifurcation, which one that goes in a reversion process inside
of this region building a reverse bifurcation, until the north
border when phenomena ends, entering regionSNR. The
BCB point, where the valuea produces a Border Collision
Bifurcation, is already signalized before and it is part of the
solution line f3

a (1) = 1. Another special region, designated
by NE, is a region where the values at its south border starts
a double period bifurcation, but at the north border, all the
process reverts in a single point to a period order before
doubling and then starts a reverse bifurcation process already
insideRBR.
If we shift the lineϕ(a), just enough to cross all 4 regions,
we obtain an amazing representation of the dynamics offa,
as represented in figure 12, and it is easy to identify the points
where occur reverse bifurcation, saddle-node bifurcations and
also border collision bifurcations.

Fig. 12. Effects when the parametera crosses the borders of regions NE,
RBR and SNR, with a clear presence of a reverse bifurcation.

With the use of parameter spacePa,b as a map to study the
behaviour of familyfa, we encounter a fertile ground where
can lead to discoveries related with the amazing properties
of this family of maps, building proper roads. Further, with
the adaptation and extension of some tools of piecewise
continuous maps, the main goal is to prove that maps like
fa,b exhibits a behaviour that resemble the one presented by
the m-modalfamilies.
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Abstract—An approach to control of invariant sets of quasi-
polynomial systems in the presence and absence of bounded
disturbances or bounded uncertainty in the model is proposed.
The control strategy is based on introduction of an invariant
functional for uncontrolled system and posing the control task as
achieving the desired value of the invariant functional by means
of control. The design is based on the reduction to the generalized
Lotka-Volterra system and employing the speed-gradient control
method.

Index Terms—Invariants, nonlinear control, stability

I. INTRODUCTION

Quasi-polynomial systems represent an important type of
mathematical models because a wide class of smooth nonlin-
ear systems can be represented in a quasi-polynomial form
[1], [2]. In turn, quasi-polynomial systems can be reduced
to generalized Lotka-Volterra form [3], [4] that is a well
known model for description of multispecies populations [9].
Besides, other standard modeling forms of biological or bio-
chemical interest, such as S-systems or mass-action systems,
are naturally embedded into the generalized Lotka-Volterra
form [3]. Generalized Lotka-Volterra model has been proved
useful in the analysis and control of the systems described by
a set of differential and algebraic equations. However most
of existing results are related to stabilization of equilibrium
points [2], [5], [6],

In a number of interesting applications the problem of
control of invariants arises [10], [11], [12], [13]. A feature of
control of invariants is in that the goal limit set is a manifold
rather than a point. Therefore some set stability problems
may arise. For a class of multispecies Lotka-Volterra systems
a solution for an invariant control problem based on speed-
gradient (SG)-method was proposed in [16].

In this paper an approach of [16] is extended to a class
of quasi-polynomial systems. We present a control strategy
that can improve stability and robustness of quasi-polynomial
systems in the presence and absence of bounded disturbances
or bounded uncertainty in the model. In this way, we introduce
an invariant functional and pose the control task as achieving
a desired value of the invariant functional.

Problem formulation is given in Section 2. Section 3 de-
scribes the control design. Section 4 and 5 provide formu-
lations and proofs of the closed loop system properties in
the absence and presence of bounded disturbances or bounded
uncertainty in the model respectively.

II. PROBLEM FORMULATION

A. Mathematical Model

Quasi-polynomial model is described by the following sys-
tem of differential equations

ẏj = yj

(
Lj +

m∑
i=1

Aji

n∏
k=1

yBikk

)
, j = 1, . . . , n, (1)

where y ∈ int
(
Rn+
)
, A ∈ Rn×m, B ∈ Rm×n, Li ∈ R,

j = 1, . . . , n. Besides L = (L1, . . . , Ln)
T . It is assumed that

rankB = n and m ≥ n.
In [7] the authors show that the model (1) can be reduced to

the generalized Lotka-Volterra also known as classical model
of multispecies populations [8], [9]:

ẋi = xi

Ni + m∑
j=1

Mijxj

 , i = 1, . . . ,m, (2)

where
M = B ·A, N = B · L, (3)

and xi is presented by

xi =

n∏
k=1

yBikk , i = 1, . . . ,m. (4)

Let us choose initial values of variables xi, i = 1, . . . ,m
according to initial values of variables yj , i = 1, . . . ,m and
equations (4). Then dynamics of the multispecies populations
(2) are equivalent to dynamics of the original quasi-polynomial
model (1). Since the system (2) includes the variables yi, i =
1, . . . , n, the stability of this system implies stability of the
original system (1).
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Introduce control inputs ul, l = l∗ + 1, . . . ,m, l∗ ≥ 1
in (2). The controlled model of multispecies populations
introduced in [16] is as follows:

 ẋi = xi(t) ·
(
Ni +

∑m
j=1Mijxj(t)

)
, i = 1, 2, . . . , l∗

ẋl = xl(t) ·
(
Nl +

∑m
j=1Mljxj(t) + ul(t)

)
, l = l∗, . . . ,m.

(5)

B. Invariant Functional

Assume that there exists at least one positive equilibrium
in the uncontrolled system (2) for some values of the system
parameters:

xi = ni > 0, i = 1, . . . ,m, (6)

and the quantities Mij , i 6= j evaluating the type and intensity
of the interaction between i-th and j-th variables form an
antisymmetric matrix

Mii = 0, Mij = −Mji, i, j = 1, . . . ,m. (7)

then the function

Vqp(x) =

m∑
i=1

ni

(
xi
ni
− log

xi
ni

)
, (8)

is an invariant of (5) for ul = 0, l = l∗ + 1, . . . ,m, l∗ ≥
1 [8]. Besides, Hessian matrix of Vqp(x) is positive definite
and, therefore, Vqp(x) > Vqp(n) for x 6= n. Hence Vqp(x)
can measure the amplitude of oscillations. Below it is used to
achieve the desired amplitude of oscillations.

Introduce the control goal as an achievement of the desired
level of the quantity Vqp (x(t)) as t→∝:

Vqp → V ∗qp, t→∝ . (9)

If V ∗qp = Vqp(n) = minVqp(x), then the goal (9) means
achievement of the equilibrium x = n. In the case Vqp(n) <
V ∗qp < Vqp(x(0)) achievement of the goal (9) means decrease
of the oscillations level. If V ∗qp > Vqp(x(0)), then achievement
of the goal (9) corresponds to the growth of the oscillations
intensity. The problem is to find control function u(t) in (5),
ensuring achievement of the control goal (9).

III. CONTROL DESIGN

Apply the speed gradient (SG) method [14] to solve the
problem. To this end introduce the so called goal function Q:

Q(x) =
1

2

(
Vqp(x)− V ∗qp

)2
. (10)

In order to achieve the goal (9), it is necessary and sufficient
that Q(x(t) converges to zero as t→∞. According to the SG
method one needs to evaluate A) derivative (speed of change)
of Q with respect to the system (5) and B) the gradient of Q̇
with respect to u.

Calculation of the time derivative of Q with respect to
system (5) yields:

Q̇(x, u) =
(
Vqp(x)− V ∗qp

) m∑
l=l∗

(xl(t)− nl)ul. (11)

Partial derivatives Q̇(·) with respect to ul are evaluated as
follows:

∂

∂ul
Q̇(x, u) =

(
Vqp(x)− V ∗qp

)
(xl(t)− nl) , l = l∗, . . . ,m.

(12)
According to the SG method the control action is chosen as
follows:

ul(t) = −γl
(
Vqp(x)− V ∗qp

)
(xl(t)− nl) , (13)

where γl > 0, l = l∗, . . . ,m, l∗ ≥ 1.

IV. CONTROL OF QUASI-POLYNOMIAL SYSTEMS IN THE
ABSENCE OF BOUNDED DISTURBANCES OR UNCERTAINTY

The first result of this section is the following statement.
Theorem 1. Assume that there exists an equilibrium in the

system (5) such that the conditions (6), (7) hold.
Then either the algorithm (13) provides the goal (9), or
the quantities of the controlled variables xl tend to their
equilibrium values nl, l = l∗, . . . ,m, l∗ ≥ 1.
If the desired level V ∗qp ≥ V eqp, where V eqp is a minimum of the
invariant, and Vqp (x(0)) > V eqp, then the control goal (9) is
achieved.

Proof.
Consider the time derivative of the goal function Q (11):

Q̇(x, u) = −2γQ
m∑
l=l∗

(xl − nl)2 ≤ 0. (14)

Since Q does not increase, there exists a finite limit of Q(t)
as t→∝. Denote it as Q. Suppose the goal (10) does not hold.
Then Q > 0. Hence Q(t) ≥ 0 for all t ≥ 0 and

Q̇(x, u) = −2γQ
m∑
l=l∗

(xl − nl)2 ≤ 0. (15)

Integration (15) yields

0 ≤ Q (x(t), u(t)) ≤ Q (x(0), u(0))−

−2γQ
m∑
l=l∗

t∫
0

(xl(s)− nl)2 ds ≤ 0.
(16)

Therefore

m∑
l=l∗

t∫
0

(xl(s)− nl)2 ds <∝ . (17)

Since the integrand is nonnegative and uniformly continuous,
it converges to zero according to Barbalat Lemma [15], that
is

xl(t)→ nl, t→∞, l = l∗, . . . ,m. (18)
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Thus either the algorithm (13) provides the control goal
(5), or a number of the controlled variables xl(t) converges to
its equilibrium nl, l = l∗, . . . ,m, l∗ ≥ 1.

The above assertion implies that the function Vqp(x) either
achieves the desired level V ∗qp, or converges to Vqp(n) = V eqp.
Therefore at xi = ni, i = 1, . . . ,m the function Q(x) =

0.5
(
Vqp(x)− V ∗qp

)2
has its minimum. Thus for all t ≥ 0

Vqp (0) ≥ V eqp. Provided that Vqp (0) = V eqp, the system is
always in its equilibrium, i.e. to achieve the control goal for
V ∗qp ≥ V eqp it is necessary Vqp (0) > V eqp J

Remark. In Theorem 1 it is supposed that the system (2)
has at least one positive equilibrium for some values of its
parameters. For a nonsingular matrix composed of Mij we
always can choose values of the birth rate Ni such that
(6) holds [17]. For a nonsingular matrix composed of Mij

positivity conditions depending only on Mij were found in
[8].

V. CONTROL OF QUASI-POLYNOMIAL SYSTEMS IN THE
PRESENCE OF BOUNDED DISTURBANCES OR UNCERTAINTY

A. Control of nonlinear systems in the presence of bounded
disturbances or uncertainty

Consider the nonlinear system{
ẋ = f(x) + g(x)u+ η,
y = h(x)

(19)

where x ∈ X ⊂ Rn is a vector of state variables, u ∈ U ⊂ Rm
is a vector of control actions, y ∈ Rp is an output vector. The
vector η ∈ Rn characterizes disturbances or uncertainty of the
system (19). X,U are open sets in the space of dimension
n and m accordingly; g is a n×m matrix function; f , h are
smooth vector functions of dimension n and p accordingly.
Moreover, h(x) is an invariant function of (19) by u = 0.

Assume that in the system there exists an unique solution
x(t) for all x(0) ∈ X and u ∈ U , and this solution is defined
on [0,+∞) and entirely contained in the set X .

Introduce a control goal as achieving such quantity of the
invariant h(x) that will be the closest one to the desired value
with the required accuracy:

lim
t→∞

Q (x(t)) ≤ CQ, (20)

where Q = y2.
Apply the speed gradient (SG) method [14] to solve this

problem. As a goal function take the function Q:

u = −γ̃∇uQ̇ = −γyT∇hT . (21)

The second result of this paper is the following statement.
Theorem 2. Suppose that the following conditions on the
system (19) hold:
• f, g, h ∈ C1.
• ‖η(t)‖ ≤ Cη .
• Lfh (x) = 0, i.e. h (x) is an invariant function in (19)

by u = 0.

• There exists ξ > 0 such that a set Qξ =
{x ∈ Rn : Q(x) ≤ ξ} is compact.

• x(0) ∈ Qξ.
• ∀x ∈ Qξ ‖h(x)T∇h(x)T ‖ ≤ C.
• The minimum eigenvalue of the matrix A (x)

T
A (x) is

uniformly positive, where A (x) = ∇h (x)T g (x):

ε = inf
X∈Rn

λmin
(
A(x)TA(x)

)
> 0.

Then the designed control algorithm (21) will provide the
control goal (20) with CQ = 2CCη/ε.

Proof.
Consider the time derivative of the goal function Q along

trajectories of (19):

Q̇ = ∂Q
∂x ẋ = 2yT∇hT (f + gu+ η) =

2yT∇hT f + 2yT∇hT gu+ 2yT∇hT η. (22)

According to the first condition of Theorem 2 the first term
of (22) is 0. Denote the second and third items of (22) as
R1, R2 and estimate them:

R1 = 2yT∇hT gu = yT
[(
∇hT g

) (
∇gTh

)]
y = yTATAy,

(23)
where A = ∇hT g. According to the fifth condition of
Theorem 2 we obtain

ATA ≥ εI, (24)

and, therefore

R1 ≤ −ε ‖y‖2 = −εQ. (25)

According to the first and forth conditions of Theorem 2
the functions f, g, h are bounded in the compact set Qξ, and
ξ is bounded according to the second condition of Theorem
2. Therefore

R2 = 2yT∇hT η ≤ CCη, (26)

where C is a positive constant such that
∥∥2yT∇hT∥∥ ≤ C.

Then time derivative of Q

Q̇ ≤ −εQ+ CCη. (27)

that implies

lim
t→∞

Q(x) ≤ CCη
ε

. (28)

Thus, if the system (19) has bounded disturbances or
uncertainty, the controls (21) limit the function Q, although
the controls do not result in tending function Q to zero, and
the upper estimate for the function Q is (28) J
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B. Quasi-Polynomial Model in the presence of bounded dis-
turbances or uncertainty

Quasi-polynomial model with bounded disturbances or un-
certainty is presented by the system

ẋi = xi(t)·

Ni + m∑
j=1

Mijxj(t) + ui(t)

+ηi, i = 1, . . . , N,

(29)
where η = (η1, . . . , ηN )

T is a vector containing disturbances
or uncertainty.

Introduce a control goal as achieving such quantity of the
invariant (8) that will be the closest one to its desired value
V ∗qp with the required accuracy:

lim
t→∞

h2 (x(t)) ≤ CVqp . (30)

where h(x) = Vqp (x)− V ∗qp.
Apply the control algorithm (13) based on the speed

gradient method to achieve the control goal (30).
The following result holds.
Theorem 3. Suppose in the system (29) the conditions hold:
• ‖η(t)‖ ≤ Cη .
• There exists 0 < ξ <

(
V ∗qp
)2

such that a set Qξ =
{x ∈ Rn : Q(x) ≤ ξ} is compact.

• x(0) ∈ Qξ.
• ∀x ∈ Qξ ‖h(x)T∇h(x)T ‖ ≤ C.
• Take

ε = inf
i; x∈Qξ

x2i ·
N∑
i=1

(
1− ni

xi

)2

.

Then the algorithm (13) will provide the goal (30) with
CVqp = 2CCη/ε.

Proof.
Theorem 3 is a consequence of Theorem 2. Indeed, in

Theorem 3 all requirements from Theorem 2 except the sixth
one hold. We have to verify this requirement, namely that the
minimum eigenvalue of the matrix ATA is uniformly positive,
where the matrix A = 5hgT .

For the system (29) functions h(x), g(x) are as follows

h(x) =

N∑
i=1

(
xi
ni
− log

xi
ni

)
−W ∗. (31)

g(x) = (x1, . . . , xN )
T
. (32)

Then

5h(x) =
(
h̃1, . . . , h̃N

)T
, h̃i = 1− xi

ni
, i = 1. . . . , N. (33)

A(x)TA(x) = g(x)5 h(x)T 5 h(x)g(x)T =
N∑
i=1

(
1− xi

ni

)2

· diag{x2i }Ni=1. (34)

Therefore the eigenvalues of the matrix A(x)TA(x) are

λi = x2i ·
N∑
i=1

(
1− xi

ni

)2

. (35)

Thus, all eigenvalues of the matrix A(x)TA(x) are strictly
positive. Therefore the system (29) satisfies all requirements
of Theorem 2 J

VI. CONCLUSION

An approach to control of invariant sets of quasi-polynomial
systems in the presence and absence of bounded disturbances
is proposed. The control strategy is based on introduction
of an invariant functional and posing the control task as
achieving a desired value of the invariant functional. The
design is based on the reduction to the generalized Lotka-
Volterra system control. The proposed method may improve
stability of the closed loop system and its robustness under
action of bounded disturbances or under bounded uncertainty
in the model. To implement the proposed algorithm an instant
information exchange between different agents (species) is
needed. In some cases it may be implemented based on
Distributed Ledger Technology.

Further research may be devoted to application of the
proposed algorithms to control of various biological or bio-
chemical systems and numerical examination of the designed
systems behavior. Examples of such system models can be
fount, e.g. in [1].

Another avenue of research is study of speed-gradient
algorithms for modeling of the biological evolution based on
maximum entropy principle and its dynamical speed-gradient
version [18].

The work was partly supported by RFBR grant 17-08-
01728, by the Government of Russian Federation (Grant 08-
08) and by the Distributed Ledger Technology Competence
Center of SPbSU.
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Abstract—In this paper we present a survey in the theory
of stability of one-dimensional discrete-time dynamical systems.
The main goal is to write a document that may be used as a
pedagogical instrument in stability analysis for researchers that
are not familiar with these techniques. Hence, we present the
principal definitions and results in this field and a collection of
classical population models widely used in population ecology.
The dynamics of these models is, in general, a time-parameter
dependent and the idea is to describe what factors in the
parameter affect population size and how and why a population
changes over time. Moreover, the presented techniques may be
extended for different fields of science since the addressed results
and examples are standard and may be adapted for a particular
situation.

Index Terms—Local Stability, Global Stability, Population
Dynamics, Applications

I. INTRODUCTION

One-dimensional discrete models are an appropriate math-
ematical tool to model the behavior of populations with
non-overlapping generations. This subject has been intensely
investigated by different researchers and is part of the solid
foundations of the modern theory of discrete dynamical sys-
tems.

A discrete dynamical system (or difference equation) is a
relation governed by the rule

xn+1 = fn(xn), n = 0, 1, 2, . . . , (1)

where x ∈ X and X is a topological space. Here, the orbit of
a point x0 is generated by the composition of the sequence of
maps

f0, f1, f2, . . . .

Explicitly,

x1 = f0(x0),

x2 = f1(x1) = f1 ◦ f0(x0),

...
xn+1 = fn ◦ fn−1 ◦ . . . ◦ f1 ◦ f0(x0),

...

If f0 = f1 = f2 = . . ., then the equation is said to be
autonomous, otherwise it is non-autonomous. If the sequence

This work was partially supported by FCT/Portugal through project PEst-
OE/EEI/LA0009/2013.

of maps is periodic, i.e., fn+p = fn, for all n = 0, 1, 2, . . .
and some positive integer p > 1, then we deal with non-
autonomous periodic difference equations. Systems where the
sequence of maps is periodic, model population with fluctua-
tion habitat, and they are commonly called periodically forced
systems.

Notice that the non-autonomous periodic difference equa-
tion (1) does not generate a discrete (semi)dynamical system
[6] as it may not satisfy the (semi)group property. One of the
most effective ways of converting the non-autonomous dif-
ference equation (1) into a genuine discrete (semi)dynamical
system is the construction of the associated skew-product
system as described in a series of papers by Elaydi and Sacker
[6]–[8], [10]. It is noteworthy to mention that this idea was
originally used to study non-autonomous differential equations
by Sacker and Sell [22].

An ordered set of points Cr = {x0, x1, . . . , xr−1} is an
r−periodic cycle in X if

f(i+nr) mod p(xi) = x(i+1) mod r, n = 0, 1, 2, . . . .

In particular,

fi(xi) = xi+1, 0 ≤ i ≤ r − 2,

and

ft(xt mod r) = x(t+1) mod r, r − 1 ≤ t ≤ p− 1.

It should be noted that the r−periodic cycle Cr in X
generates an s−periodic cycle on the skew-product X × Y
(Y = {f0, f1, . . . , fp−1}) of the form

Ĉs = {(x0, f0), (x1, f1), ..., (x(s−1) mod r, f(s−1) mod p)},

where s = lcm[r, p] is the least common multiple of r and p.
To distinguish these two cycles, the r−periodic cycle Cr

on X is called an r−geometric cycle (or simply r−periodic
cycle when there is no confusion), and the s−periodic cycle
Ĉs on X×Y is called an s−complete cycle. Notice that either
r < p, or r = p or r > p.

Define the composition operator Φ as follows

Φin = fn+i−1 ◦ . . . ◦ fi+1 ◦ fi.

When i = 0 we write Φ0
n as Φn.
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As a consequence of the above remarks it follows that
the s−complete cycle Ĉs is a fixed point of the composition
operator Φis. In other words we have that

Φis(xi mod r) = xi mod r.

If the sequence of maps fi, i = 0, 1, 2, . . . is a parameter
family of maps one-to-one in the parameter, then by [11] we
have that xi mod p is a fixed point of Φp.

Before ending this short introduction, we mention that in
section II we present the principal results concerning the
stability of fixed points in autonomous discrete dynamical
systems. The results presented in this section may be extended
to periodic systems substituting the map f for the composition
operator Φ. The next two sections are devoted to applica-
tions. In section III we present the principal models for one-
dimensional population dynamics. In the next section we refer
some studies in non-autonomous periodic equations.

Finally, this survey may be used as a pedagogical instrument
in stability analysis for students or researchers that are not
familiar with these techniques and aims to study discrete
dynamical systems. Moreover, it may be used for researchers
in other fields that are familiar with some basic tools in
Analysis. The presented examples in population dynamics are
known and may be extended for other areas following the
exposed techniques.

II. GENERAL RESULTS

Consider an interval I ⊆ R and an autonomous map
f : I → I . A point x∗ ∈ R is said to be a fixed point (or
equilibrium point) of f if f(x∗) = x∗, and given x0 ∈ R , we
define its orbit O(x0) as the set of points

O(x0) = {x0, f(x0), f2(x0), f3(x0), . . .},

where fn = f ◦fn−1, for n ∈ N, where N is the set of positive
integers and ◦ represents the composition of functions.

One of the main objectives of the stability theory of discrete
dynamical systems is to study the behavior of orbits when the
starting points are near fixed points.

Let f : I → I be a map and x∗ be a fixed point of f , where
I is an interval of real numbers. Then:

1) The fixed point x∗ is said to be locally stable if, for any
ε > 0, there exits δ > 0 such that, for all x0 ∈ I with
|x0−x∗| < δ, we have |fn(x0)−x∗| < ε, for all n ∈ N.
Otherwise, the fixed point x∗ will be called unstable.

2) The fixed point x∗ is said to be attracting if there exists
η > 0 such that |x0−x∗| < η implies lim

n→∞
fn(x0) = x∗.

3) The fixed point x∗ is said locally asymptotically stable
if it is both stable and attracting. If in the previous item
η = ∞, then x∗ is said to be globally asymptotically
stable.

Fig. 1 illustrates the idea behind the definition of stability.
Working with concrete examples, the definition of stability

may not be the most practical tool to show the stability of a
fixed point. There exists a simple but powerful criterion for
knowing the local stability of fixed points. We may divide the

Fig. 1. Stable vs unstable fixed point. In the first case, the orbit of a starting
point x0 in a neighborhood δ of x∗ stay in a neighborhood ε of x∗ while in
the second case, after certain order, the orbit start to be out of a neighborhood
ε of x∗.

fixed point into two categories: hyperbolic and nonhyperbolic.
A fixed point x∗ of a map f is said to be hyperbolic if
|f ′(x∗)| 6= 1, where f ′ denotes the derivative of the function
f . Otherwise, the fixed point is nonhyperbolic.

Theorem(Elaydi [4], page 25):
Let x∗ be a hyperbolic fixed point of a map f , where f is

continuous and differentiable at x∗. The following statements
hold true:

1) If |f ′(x∗)| < 1, then x∗ is locally asymptotically stable.
2) If |f ′(x∗)| > 1, then x∗ is unstable.
The stability criteria for nonhyperbolic fixed points are more

complex and are summarized in the following theorem. Before
presenting it we need to introduce the notion of Schwarzian
derivative.

The Schwarzian derivative, Sf , of a function f , is defined
by

Sf(x) =
f ′′′(x)

f ′(x)
− 3

2

(
f ′′(x)

f ′(x)

)2

.

In particular, when f ′(x∗) = −1, we have Sf(x∗) =
−f ′′′(x∗)− 3

2 [f ′′(x∗)]
2.

Theorem(Elaydi [4], pages 28-30): Let x∗ be a fixed point
of a map f and f ′, f ′′ and f ′′′ be continuous at x∗.

1) Let f ′(x∗) = 1.
a) If f ′′(x∗) > 0, then x∗ is unstable but semi-stable

from the left.
b) If f ′′(x∗) < 0, then x∗ is unstable but semi-stable

from the right.
c) If f ′′(x∗) = 0 and f ′′′(x∗) > 0, then x∗ is

unstable.
d) If f ′′(x∗) = 0 and f ′′′(x∗) < 0, then x∗ is locally

asymptotically stable.
2) Let f ′(x∗) = −1.

a) If Sf(x∗) < 0, then x∗ is locally asymptotically
stable.

b) If Sf(x∗) > 0, then x∗ is unstable.
In applications it is important to know whenever the con-

ditions of local stability imply global stability. The precedent
results gives conditions on local stability. In 1955 W. Coppel
stated the following result:
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Theorem(Coppel [1]): Let I = [a, b] ⊆ R and f : I → I
be a continuous map. If the equation f (f (x)) = x has no
roots, with the possible exception of the roots of the equation
f (x) = x , then every orbit under the map f converges to a
fixed point.

Coppel’s theorem is not enough to ensure global stability. It
is necessary to have uniqueness of the fixed point. In certain
cases, depending the model we can establish global stability
since only a unique fixed point will play a rule, as we will
illustrate in the next sections.

III. AUTONOMOUS MODELS

In this section we apply the results stated in the previous
section to some important autonomous models in applications.
We will start by the Ricker model which is a fishing model.

Example I - Ricker model: The Ricker model is given by

xn+1 = xne
p−xn ,

where xn ≥ 0 is the density of the population at the period of
time n and p > 0 is the carrying capacity of the population.

The map of the model is given by f(x) = xep−x. There
are two fixed points, namely x∗ = 0 and x∗ = p. The origin
is an unstable fixed point provide that f ′(0) = ep > 1. The
positive fixed point is locally asymptotically stable whenever
0 < p ≤ 2 and unstable when p > 2. Notice that |f ′(p)| <
1 implies that 0 < p < 2 and since f ′(2) = −1 we have
Sf(2) = −1 < 0.

Now, solving the equation f(f(x)) = x, one can show that
there are only two solutions whenever 0 < p ≤ 2, the origin
and x = p, precisely the fixed pints of the map f . Since the
origin is unstable, and x∗ = p is the unique fixed point in
the positive real line, we have that the conditions of local
stability of x∗ = p will implies global stability with respect
to the positive real line. This means that every orbit starting
at x0 > 0 will converge to x∗ = p whenever 0 < p ≤ 2.

In Figure 2 is presented a cobweb diagram for this model.
Notice that, a cobwebbing diagram is a geometrical toll where
one can see the location of the values in the orbit of a starting
point x0. These values are located in the diagonal line y = x.
In this case, it is clear that the orbit of x0 = 0.1 converge to
x∗ = 1.73.

It follows a difference equation which is the discrete version
of the Verhulst model [24], [25] also called logistic map,
a population model well known and studied in this field.
We recall that the dynamics of this equation has played a
paramount importance and it is present in the foundations and
in the development of the modern theory of discrete dynamical
systems.

Example II - Logistic model: The 1D logistic equation is
given by

xn+1 = µxn(1− xn),

where xn ∈ [0, 1] is the density and µ ∈ (0, 4) is a control
parameter that represents a combined rate for reproduction and
starvation.

We remark that this equation is found to be the most suitable
model for the study of the surplus production of the population

1 2 3 4 5
x

0.5

1.0

1.5

2.0

2.5

3.0

f HxL

Fig. 2. Cobweb diagram for the Ricker model xn+1 = xnep−xn when
p = 1.73 and the starting point x0 = 0.1. This example illustrates that
the origin is an unstable fixed point and the positive fixed point is globally
asymptotically stable.

biomass of species in the presence of limiting factors such
as food supply or disease. The above logistic model can
possess stable, unstable, periodic and chaotic behaviors and
thus receives wide attention due to the great implications of it
in chaos theory (see May [20] for details at this point).

Since the map is given by f(x) = µx(1 − x), the model
has two fixed points, the origin and x∗ = µ−1

µ .
From the relation f ′(0) = µ we have that the origin is

locally asymptotically stable when 0 < µ < 1 and unstable
when µ > 1. When µ = 1 we have f ′(0) = 1. It follows that
f ′′(0) = −2 < 0 and thus the origin is semi-stable from the
right.

It is a straightforward computation to see that x∗ = µ−1
µ

is locally asymptotically stable whenever 1 < µ ≤ 3 and
unstable when µ ∈ (0, 1] ∪ (3, 4).

Following a similar idea as the precedent example, one can
show that the solutions of the equation f(f(x)) = x are x = 0
and x∗ = µ−1

µ whenever 0 < µ ≤ 3. There are two cases: (i)
x∗ = 0 is globally asymptotically stable when 0 < µ ≤ 1
provide that it is the unique fixed point of f in [0, 1] and
(ii) when 1 < µ ≤ 3 the fixed point x∗ = µ−1

µ is globally
asymptotically stable with respect to the interior of the unit
interval since it is the unique fixed point in this region.

Example III - Beverton-Holt model: The 1D Beverton-
Holt map is given by

f(x) =
rKx

K + (r − 1)x
,

where x ≥ 0 is the density, K > 0 is the carrying capacity
and r > 0 is the growth rate of the population. There are two
fixed points, the origin which is locally asymptotically stable
when 0 < r ≤ 1 and a positive fixed point x∗ = K which is
locally asymptotically stable whenever r > 1.

In this example we do not need to apply Coppel’s theorem to
establish global stability since the model is monotone. Hence,
the origin is globally asymptotically stable with respect to
the interval [0,K) whenever 0 < r ≤ 1, and x∗ = K is
globally asymptotically stable with respect to the positive real
line whenever r > 1.
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Fig. 3. Cobweb diagram for the logistic map when x0 = 0.15 and µ = 2.6.
An orbit of starting point in the interior of the unit interval converges to the
positive fixed point since it is globally stable in this set.
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Fig. 4. Cobweb diagram for the Beverton-Holt model when r = 2 and
K = 2. In this case we present the orbit of two initial points. It illustrates the
unstability of the origin and the globally stability of the positive fixed point.

Example IV - Ricker with Allee effect: The modified
Ricker model with Allee effect is given by

xn+1 = x2
ne
p−xn ,

where xn ≥ 0 is the density of the population and p > 0 is
the carrying capacity.

The fixed points of the model are the solutions of the
equation x2ep−x = x. From this relation it follows x∗ = 0 and
xep−x = 1. This last equation has no solution if p < 1, exactly
one solution x∗ = 1 if p = 1 and two solution, x∗ = A < 1
and x∗ = K > 1 if p > 1. In population dynamics these last
fixed points are known as threshold point (A) and carrying
capacity (K).

Hence, there are 3 cases to consider:

(i) p < 1. In this case the origin is a globally asymptotically
stable fixed point provide that it is the unique fixed point
in the non-negative real line. Notice that f ′(0) = 0.

(ii) p = 1. There are two fixed points in the model, the
origin and x∗ = 1. The origin is locally asymptotically

1 2 3 4 5
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2.5

3.0

f HxL

Fig. 5. Cobweb diagram of the Ricker model with Allee effect when the
parameter p = 2. It illustrates the local stability of the origin and the carrying
capacity and the instability of the threshold point.

stable since f ′(0) = 0 and its basin of attraction1 is
the set [0, 1[∪]Ar, +∞[, where Ar is the right pre-
image of 1, i.e., the greatest solution of the equation
x2e1−x = 1 which is in this case ≈ 3.51286. The fixed
point x∗ = 1 is semistable from the right since f ′(1) = 1
and f ′′(1) = −1 < 0. Its basin of attraction is the set
[1, Ar].

(iii) p > 1. There are three fixed points, the origin, x∗ =
A < 1 and x∗ = K > 1. The origin is locally asymp-
totically stable fixed point and its basin of attraction is
the set [0,Ar[∪]Ar, +∞[, where Ar is the right pre-
image of A.
In order to determine the stability of A and K notice
that

f ′(x) = x(2− x)ep−x,

and for the non-trivial values we have

f ′(x) =
(2− x)

x
f(x).

Hence |f ′(A)| = |2−A| and |f ′(K)| = |2−K|. Since
0 < A < 1 and K > 1 we have that A is an unstable
fixed point whereas K is locally asymptotically stable
whenever 1 < K < 3. If this is the case, then its basin
of attraction is ]A,Ar[.

Example V - Polynomial with Allee effect: Let us consider
the difference equation given by

xn+1 = µnx
kn
n (1− xn) , (2)

where xn ∈ [0, 1], µn > 0 and kn = 2, 3, 4, . . . for all non
negative integer n. For more details about this equation please
see [18].

Equation (2) may be represented by the map

fn(x) = µnx
kn (1− x) .

Notice that when µn = µ and kn = 1 for all n, Equation (2)
is the logistic equation studied in Example III.

In order to insure that xn ∈ I = [0, 1] for all n, we make
the following assumption concerning the parameters

1The basin of attraction (or the stable set) of a fixed point consists of all
points that are forward asymptotic to it.
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H: µn ≤
(
kn + 1

kn

)kn
(kn + 1), n = 0, 1, 2 . . . .

Assumption H guarantees that all the orbits in (2) are
bounded. Furthermore, it guarantees that fn maps the interval
I into the interval I for all n = 0, 1, 2 . . ..

Let us now study the dynamics of the particular map
f (x) = µxk (1− x), with x ∈ I, µ > 0 and k = 2, 3, . . ..
To find the fixed points of f we determine the solutions of
the equation µxk(1 − x) = x. After eliminating the trivial
solution, x = 0, the positive fixed points are the solutions of

µxk−1 (1− x) = 1, (3)

or equivalently

ln(µ) = − (k − 1) lnx− ln (1− x) . (4)

Letting g(x) = − (k − 1) lnx−ln (1− x), we see that g(x) >
0 for all x ∈ (0, 1). Moreover, g is convex in the unit interval
since g′(x) > 0, for all x ∈ I , and attains its minimum at
g(cg) where cg = k−1

k is the unique critical point of g in the
unit interval. Let Oµ be the immediate basin of attraction of
the origin.

1) If g (cg) > ln(µ), then Eq. (4) has no solution. Hence,
x∗ = 0 is the unique fixed point of the map f whenever

µ < k
(

k
k−1

)k−1

. Under this scenario x∗ = 0 is
globally asymptotically stable, given that it is the unique
fixed point in I . Notice that at the origin we have
f ′(0) = 0 and that Oµ = [0, 1].

2) If g (cg) = ln(µ), then Eq. (4) has a unique solu-
tion, x∗ = k−1

k = cg . Hence, the map f has a

unique positive fixed point when µ = k
(

k
k−1

)k−1

.
In this case and using (3), we obtain |f ′ (x∗)| = 1
and |f ′′ (x∗)| = −k2 < 0, that allows us to con-
clude that x∗ is an unstable fixed point, but semi-
stable from the right. Moreover, its immediate basin
of attraction is the set

[
x∗,max f−1({x∗})

]
where

f−1({x∗}) is the pre-image of {x∗}. Notice that Oµ =
I \
[
x∗,max f−1({x∗})

]
.

3) If g (cg) < ln(µ), then Eq. (4) has two positive solutions.
Hence, the map f possesses two positive fixed points

whenever µ > k
(

k
k−1

)k−1

. The smaller, denoted as
Aµ, is known as a threshold point and the greater,
denoted by Kµ, is known as a carrying capacity. Under
this scenario, the fixed point Aµ is always unstable and
the fixed point Kµ is locally asymptotically stable in
the interval

(
Aµ,max f−1({Aµ}

)
if
∣∣k − µKk

µ

∣∣ < 1.
Moreover, Oµ = [0,Aµ) ∪

(
max f−1({Aµ}), 1

]
.

Notice that the sequence ak =

(
k + 1

k

)k
(k + 1) that is

used to define Assumption H is increasing for k = 2, 3, . . ..
We now resume the precedent ideas in the following result,
for a general integer k = 2, 3, . . .:

Theorem: Let f(x) = µxk(1− x), k = 2, 3, . . .. Then the
following yields:

1) If µ < k
(

k
k−1

)k−1

, then x∗ = 0 is a globally
asymptotically stable fixed point of f and its basin of
attraction is the unit interval.

2) If µ = k
(

k
k−1

)k−1

, then the map has two fixed
points, the origin and a positive fixed point x∗ =
k−1
k . This last one is locally asymptotically stable

from the right and its immediate basin of attraction
is the set

[
x∗,max f−1({x∗})

]
. Moreover, Oµ = I \[

x∗,max f−1({x∗})
]
.

3) If µ > k
(

k
k−1

)k−1

, then the map has three fixed points,
the origin, a threshold fixed point Aµ and a carrying
capacity Kµ such that Aµ < Kµ. The threshold fixed
point is always unstable and if |k−µKk

µ| < 1 the carry-
ing capacity is locally asymptotically stable with a basin
of attraction given by the set

(
Aµ,max f−1({Aµ})

)
.

Moreover, Oµ = I \
[
Aµ,max f−1({Aµ})

]
.

Remark: Before ending this example let us have a particular
look in the dynamics of the autonomous equation when k = 2,
i.e., the dynamics of the modified logistic equation with Allee
effect when the map is given by f(x) = µx2(1− x).

1) If µ < 4, then the origin is a globally asymptotically
stable fixed point provided that it is the unique fixed
point in the unit interval.

2) If µ = 4, then the map possesses two fixed points, the
origin and x∗ = 1

2 . The basin of attraction of the origin
is

O4 =

[
0,

1

2

)
∪

(
1 +
√

5

4
, 1

]
, (5)

while the basin of attraction of the positive fixed point
is
[

1
2 ,

1+
√

5
4

]
. Notice that x∗ = 1

2 is a fixed point semi-
stable from the right.

3) If 4 < µ, then the map has three fixed points, the
origin, the threshold point Aµ = 1

2

(
1−

√
µ−4
µ

)
and

the carrying capacity Kµ = 1
2

(
1 +

√
µ−4
µ

)
.

It is a straightforward computation to see that, when
µ > 4,

|f ′(Aµ)| = 3 +
µ

2

(
−1 +

√
µ− 4

µ

)
> 1.

Hence, the fixed point Aµ is unstable.
Similarly, we see that

|f ′(Kµ)| =
∣∣∣∣3− µ

2

(
1 +

√
µ− 4

µ

)∣∣∣∣ < 1 iff 4 < µ <
16

3
.

When µ = 16
3 we have f ′(Kµ) = −1. Forward compu-

tations show that the Schwarzian derivative evaluated at
the fixed point is negative, i.e., Sf(Kµ) < 0. It follows
that the fixed point Kµ is asymptotically stable. Thus,
the fixed point x∗ = Kµ is locally asymptotically stable
whenever 4 < µ ≤ 16

3 and its basin of attraction is the
set
(
Aµ, max f−1({Aµ})

)
. Moreover,

Oµ = [0,Aµ) ∪
(
max f−1({Aµ}), 1

]
. (6)
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IV. NON-AUTONOMOUS MODELS

In this section we present some studies for particular peri-
odic difference models. We notice that the study of this kind
of equations is quite complicate and in certain cases it is not
possible to find explicitly the fixed points due the complexity
of computations, specially nontrivial fixed points.

Example VI - Periodic Ricker map:
Let us consider the periodic difference equation given by

the following equation

xn+1 = Rn(xn),

where the sequence of maps Rn(x) is given by

Rn(x) = xern−x, n = 0, 1, 2 . . . , (7)

x ≥ 0 is the density of the population and rn > 0, n =
0, 1, 2 . . . is the sequence of individual carrying capacities.

Notice that the local stability condition for each individual
map Ri(x) is given by

0 < ri ≤ 2, i = 0, 1, 2 . . . ,

as is shown in Example III.
In order to have periodicity we require that Rn+p = Rn,

for all n = 0, 1, 2, . . ., i.e., the sequence of parameters satisfies
rn = rn mod p, for all n. It is clear that the composition map

Φp(x) = Rp−1 ◦ . . . ◦R1 ◦R0(x)

is continuous in R+
0 .

In [21] R. Sacker showed that the map Φp has a globally
asymptotically stable fixed point whenever the periodic se-
quence of parameters satisfies 0 < rn ≤ 2, n = 0, 1, 2, . . . .
Since the sequence of maps is one-to-one relative to the pa-
rameters, it follows from [11] that the globally asymptotically
stable fixed point of Φp generates a globally asymptotically
stable p−periodic cycle of the form

{x0, x1, . . . , xp−1} .

Using the chain rule of derivative it follows that

Φ′p(x0) = R′p−1(xp−1)R′p−2(xp−2) . . . R′1(x1)R′0(x0).

Since R′i(x) = (1−x)epi−x and the dynamics of the periodic
orbit is xi+1 = xie

ri−xi , i = 0, 1, 2 . . . , p− 1, the stability
condition of the periodic orbit is

p−1∏
i=0

|1− xi| < 1. (8)

Later on, Elaydi et al. [12] noticed that the region of stability
in the parameter space determined by Sacker may be larger
as it is shown in Fig. 6 for a 2−periodic equation. They have
been determined the boundary of the region and in a recent
paper, Liz [19] showed global stability in this region using the
following result:

Theorem(Corollary 2.9 in [13] by El-Morshedy & López):
Let a ≥ 0, b > a and g : (a, b)→ [a, b] be a continuous map
with a unique fixed point x∗ such that (g(x)−x)(x−x∗) < 0

S
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0.0
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r 1

Fig. 6. Region S where the 2−periodic Ricker equation has a globally
asymptotically stable 2−periodic cycle. The curves are part of the region
of global stability. Once the parameters crosses these curves the 2−periodic
cycle becomes unstable.

for all x 6= x∗. Assume that there are points a ≤ c < x∗ <
d ≤ b such that the restriction of g to (c, d) has at most
one turning point and whenever it makes sense, g(x) ≤ g(c)
for every x ≤ c, and g(x) ≥ g(d) for every x ≥ d. If g
is decreasing at x∗, assume additionally that Sg(x) < 0 for
all x ∈ (c, d) except at most one critical point og g and
−1 < g′(x∗) < 0. Then the fixed point x∗ is globally stable.

It remains as an open problem to show global stability for
p ≥ 3.

Example VII - Periodic Beverton-Holt model:
Let xn+1 = Bn(xn), n = 0, 1, 2, . . . where the map Bn

is given by

Bn(x) =
rKnx

Kn + (r − 1)x
. (9)

Here x ≥ 0 is the density, the parameter r > 1 is the grow
rate and the sequence of parameters Kn > 0 are the carrying
capacities of each individual population. In Example III is
established the conditions for stability of each individual map
Bn.

Let us now assume that Kn+p = Kn for all n and p > 1,
i.e., the sequence of maps Bn is p−periodic. Since each
individual map is monotone and the composition of monotone
maps is monotone, we have that Φp is a monotone map.
Moreover, the orbits are bounded since Bn(x) < r

r−1Kn for
all n.

It follows from the Brouwer’s fixed point theorem that Φp
has a fixed point. Due the monotonicity we have that the fixed
point is globally asymptotically stable. This fixed point of Φp
generates a globally asymptotically stable p−periodic cycle in
the original equation (9) of the form

{x0, x1, . . . , xp−1} .

In a famous conjecture, Chushing and Hensen [2], [3] stated
that the average of the individual carrying capacities is less
than the average of the numbers in the p−periodic cycle, i.e.,

K0 +K1 + . . .+Kp−1

p
<
x0 + x1 + . . .+ xp−1

p
.
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Using Jensen’s inequality some researchers solved positively
this conjecture. To cite few [5]–[10], [15], [16], [23].

In conclusion, forcing the system may be beneficial for the
population since the carrying capacity of the periodic popula-
tion will be greater than the individual carrying capacities.

Example VIII - Generalized periodic logistic:
We start this example presenting a result related to the non-

autonomous equation (2) when k = 2 (although it may be
extended for other values of the parameter k as well). It is not
hard to prove the following:

Lemma: Consider the non-autonomous difference equation
given by

xn+1 = µnx
2
n (1− xn) , (10)

where xn ∈ [0, 1], µn ∈
(
0, 27

4

]
, for n = 0, 1, 2 . . ., and Oµ

the immediate basin of attraction of the origin. Then

4 ≤ µ1 ≤ µ2 ≤
27

4
⇒ O4 ⊇ Oµ1 ⊇ Oµ2 ⊇ O 27

4
, (11)

where O4 is given by (5) and

O 27
4

=

[
0,

9−
√

33

18

)
∪
(

max f−1
({

A 27
4

})
, 1
]
, (12)

where max f−1
({

A 27
4

})
≈ 0.971 62.

Let us now turn our attention to the non-autonomous
periodic equation (2). We will study the case where the
sequence of maps is p−periodic, i.e., when fn+p = fn,
for all n = 0, 1, 2, . . .. Under this scenario, equation (2) is
p−periodic.

The dynamics of the non-autonomous p−periodic equation
(2) is completely determined by the following composition
operator

Φp = fp−1 ◦ . . . ◦ f1 ◦ f0.

From assumption H it follows that Φp(I) ⊆ I with Φp(0) = 0
and Φp(1) = 0. Hence, by the Brouwer’s fixed point theorem
[14], the composition operator Φp has a fixed point in the unit
interval.

It is clear that x∗ = 0 is a locally asymptotically stable fixed
point of Φp provided that |Φ′p(0)| = 0. Now, if Φp(x) < x,
for all x ∈ (0, 1), then x∗ = 0 is the unique fixed point of
the composition operator Φp in the unit interval. In this case,
x∗ = 0 is a globally asymptotically stable fixed point and its
basin of attraction is the entire unit interval. This is the case
where local stability implies global stability in the sense that
every orbit of x0 ∈ I converge to the origin.

Notice that, if CΦp is the set of critical points of Φp, i.e.,
if CΦp

contains all the solutions in the unit interval of the p
equations Φi(x) = ci, i = 0, 1, . . . , p − 1, where ci is the
critical point of the map fi, then Φp(x) < x, for all x ∈ (0, 1)
if Φp(cΦp

) < cΦp
, where cΦp

∈ CΦp
.

Now, if |Φp(x)| > x for some x ∈ (0, 1), the composition
operator Φp has more than one fixed point. We know from
Coppel’s Theorem [1] that every orbit converges to a fixed
point if and only if the equation Φp ◦ Φp(x) = x has
no solutions with the exception of the fixed points of Φp.

Fig. 7. Composition of three generalized logistic maps. The composition map
Φ3 is represented by the solid curve and the individual maps are represented
by the dashed curves. The values of parameters are k = 2, µ0 = 6.5 (f0),
µ1 = 5.5 (f1) and µ2 = 6 (f2).

It is not possible, in general, to say much concerning the
number of fixed points of Φp since we have many scenarios.
However, if all maps fi have a threshold fixed point Ai

and we let Am = min{A0,A1, . . . ,Ap−1} and AM =
max{A0,A1, . . . ,Ap−1}, then one can show that the minimal
positive fixed point of Φp, AΦp , lies between Am and AM

and is, in fact, an unstable fixed point. Under this scenario, the
immediate basin of attraction of the origin is ∪i≥1Ji where
Ji ⊂ I and

Φp(Ji) ⊂ [0,AΦp
).

See Fig. 7 for an example of this scenario.
We remark that each fixed point of the composition map

Φp, with the exception of x∗ = 0, generates a periodic orbit
in equation (2). More precisely, if x∗ is a non-trivial fixed
point of Φp, then

C = {x0 = x∗, x1 = f0(x0), x2 = f1(x1), . . . , xp−1 = fp−2(xp−2)}

is a periodic cycle of equation (2), which is locally asymptot-
ically stable if

|Φ′p(x∗)| =

∣∣∣∣∣
p−1∏
i=0

f ′i(xi)

∣∣∣∣∣ < 1.

Notice that, due the periodicity of the maps fi, we have xp =
fp−1(xp−1) = x0, xp+1 = x1, and so on.

From the dynamical point of view, it is interesting to know
the region where the stability of the fixed points occurs. Since
we are not able to find explicitly the fixed points of the
composition map Φp for general values of the parameters ki
and µi, i = 0, 1, . . . , p−1, we will particularize and study the
cases where this is possible as are the cases when p = 2, 3, 4
and k = 2, i.e., we will study the dynamics of the system
when the sequence of maps is 2−periodic and given by

fn mod(2)(x) = µn mod(2) x
k(1− x), k = 2, 3, 4.
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Fig. 8. Region of local stability, in the parameter space µ0Oµ1 where the
fixed points of f1 ◦ f0 are locally asymptotically stable and the maps are
given by fi(x) = µix

2(1 − x), i = 0, 2.

Let us start with the case k = 2. Following the techniques
employed in [17], one can find the region of local stability
of the fixed points of the composition map Φ2 = f1 ◦ f0 by
calculating the boundary where the absolute value of Φ′2(x∗)
is equal to one. This happens when f1(f0(x∗)) = x∗

f ′1(f0(x∗))f ′0(x∗) = 1
(13)

and  f1(f0(x∗)) = x∗

f ′1(f0(x∗))f ′0(x∗) = −1
. (14)

Since the computations are long we will omit it here. Now,
drawing implicitly, in the parameter space, the curves where
the two previous equations are satisfied, we find the region
where the stability of the fixed points of Φ2 occurs. The
stability regions are depicted, in the parameter space µ0Oµ1,
in Fig. 8.

If the parameters µ0 and µ1 belong to the region O, then
the origin is a fixed point globally asymptotically stable.
Once the parameters cross the dashed curve, from Region
O to Region S, a bifurcation occurs, known as saddle-node
bifurcation. The fixed point x∗ = 0 becomes unstable and
a new locally stable fixed point of Φ2 is born. This fixed
point is, in fact, a 2−periodic cycle of the 2−periodic equation
(2). Now if the parameters µ0 and µ1 cross the dashed curve
from Region S to Region R, a saddle-node bifurcation occurs.
The 2−periodic cycle becomes unstable and a new locally
asymptotically stable 2−periodic cycle is born.

For a general framework of bifurcation in one-dimensional
periodic difference equations, we refer the work of Elaydi,
Luı́s, and Oliveira in [12].

Now, following the same techniques as before, we are able
to find the regions of local stability of fixed points when k = 3
and k = 4. These regions are represented in Fig. 9. As we can
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4
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Fig. 9. Regions of local stability, in the parameter space, of the 2−periodic
equation when k = 3 (left) and k = 4 (right).

observe, they are similar to the case k = 2 and the conclusions
follow in the same fashion.

V. CONCLUSION

In this paper, we have presented a survey in local stability of
discrete-time dynamical systems. The most important results
concerning stability of hyperbolic and non-hyperbolic fixed
points are addressed. Examples in both, autonomous and non-
autonomous periodic models, are deeply studied. Some of
these examples are widely used in the literature such as the
Beverton-Holt model, the logistic model and the Ricker model.
However, the examples with Allee effect are not so well known
and studied. We should mention that, in the past two decades,
the Allee effect was deeply studied in discrete dynamical
systems.

Finally, this survey aims to be as a pedagogical instrument
in stability analysis of discrete dynamical systems.
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Abstract — We discuss a possible occurrence of annuity 
payments which follow a basic-hypergeometric progression, 
relative to the associated spot rate. We give explicit formulas for 
calculating the outstanding balance in a particular model where 
a single interest rate is replaced with a particular interest rates 
structure. 

Keywords — Annuity, Basic hypergeometric series, 
Outstanding loan balance. 

I. INTRODUCTION AND MAIN RESULT

An annuity is a series of payments, typically following a 
pattern, e.g., level (i.e., same every period). Annuities are used 
for calculation of loan amortization schedules, bond prices, 
and in insurance applications. If a loan in the initial amount L 
is being paid off by a series of level payments P over n years 
with annual effective interest rate of i, with payments made at 
the end of each year, then the outstanding balance of a loan at 
time k (expressed in years), where k is an integer, just after the 
k-th payment was made at the end of the (k – 1)-st year, is 

 (1) 

alternatively written as 

 

(2) 

(1) is called the prospective method of calculation of a loan 
balance, and (2) is termed the retrospective method of 
calculation (see [1]). In the above k and n are natural numbers.

 Loan repayments are not always level in practical 
scenarios.  One possible alternative is to pay l times the 
interest due the loan whose initial balance was L, where l is a 
parameter greater than 1. With an annual effective interest rate 
of i, the loan balance would be: L at time 0,  

L – L(l – 1)i = L(1 – (li – i)) 

at time 1, then 

L(1 – (li – i)) (1 – (li – i)) = L(1 – (li – i))2 

at time 2, etc., so that in each payment the balance of the loan 
is multiplied by the expression (1 – (li – i)) and with balance 
at time k equal to 

(3) 

The last step follows from the Binomial Theorem. Note that 

the terms  for j = 0, 1, …, etc., form a geometric 
progression as the ratio of two consecutive terms is always 

Recall that a positive integer x, the falling factorial is defined 
as 

 

for a positive integer n, and Note that  

Also, the q-shifted factorial is defined as 

We say that a series of the form  is a basic 

hypergeometric series if  for every n, where, s

p(q) and r(q) are polynomials of arbitrary degree in q, q is a 
parameter such that  and  assuring convergence 
of the series. 

 We use the concepts and notation of basic hypergeometric 
series (see [2]) throughout this note. We have 

Note that 

 

OBk = Pan−k i = P ⋅
1− 1+ i( )− n−k( )

i
,

OBk = L 1+ i( )k −Psk i = L 1+ i( )k −P ⋅
1+ i( )k −1

i
.

L 1− li− i( )( )k = L 1− l−1( )i( )k =

= L ⋅ k
j

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
− l−1( )i( ) j

j=0

k

∑ .

− l−1( )i( ) j

− l−1( )i.

x( )n = x x−1( ) x−2( )... x− n−1( )( )= x−k( )
k=0

n−1

∑ ,

x( )0 =1.
x( )n
n!
= x

n

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
.

a;q( )n = 1−aqk( )
k=0

n−1

∏ = 1−a( ) 1−aq( ) 1−aq2( )... 1−aqn−1( ).

anx
n

n=0

+∞

∑
an+1
an
=
p q( )
r q( )

,

q <1, x <1,

1− x( ) 1− xq( )... 1− xqn−1( )= x :q( )n .

lim
n→∞

x :q( )n = 1− xqn( )
n=0

∞

∏ .
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We see that for large values of k, the expression from (3) 

representing the outstanding loan balance at time k, can reach 
the value of 0, resulting in full repayment of the loan, provided 
that 1 < l < 2 and 0 < i < 1 (a very natural assumption for 
interest rates).  

II. VARYING INTEREST RATES

A more complicated scenario occurs if we instead use a 
varying interest rate. Let us assume that the interest rate 
(forward rate, or short rate) from time j – 1 to time j is 

 This assumption is a special model for persistently 

falling interest rates, a scenario akin to the recent experience 
of developed economies such as Japan, or Germany, and, to a 
degree, the United States. We then have the following 

Proposition 1. Suppose a loan L’ is to be repaid at l times 
the forward rate (or short rate) from time j – 1 to time j given 
as Then the loan will need either a single final 
payment (a balloon payment) or an additional annuity of 
scheduled payments, written as A, to complete the loan 
repayment, since 

(4) 

Note that the proposition is stated to imply that we require 

if the original term of the payment structure was k periods. 

We note that (4) is a special case of q-binomial formula [2, 
p. 5, eq. (6.23)]:

 (5) 

Additionally, the left-hand side reduces to  when
 which may be interpreted to be the case illustrated for 

(3). 

 Proof of the Proposition 1. In order to prove our claim, we 
need to show that for arbitrarily large k, or equivalently for 

  To see this, we use the limiting case of the 
q-binomial formula (1.5):

 

and select x = l – 1, 1 < l < 2, and q = i. The terms in the series 
are clearly declining, tending to zero, and alternating from the 
first term of 1, which shows that the series converges to a 
value in the open interval (0, 1). Hence 

and 

We also note that in the case when 0 < l < 1, the value of A is 
larger than in the case when 1 < l < 2, as in this unusual 
arrangement at the end of k periods there is an outstanding 
balance greater than the original loan L’, by (4). Clearly, this 
means a final balloon payment is required.  

III. FINAL COMMENTS

If A is selected as a final payment and satisfies  
for 1 <  l  < 2, then this is the balloon payment in the traditional 
sense, as the first payment is the otherwise largest one in such 
a scenario. While it seems unlikely that the short rate  may 

decline as rapidly as  we believe that our model is still 
feasible. It may be of interest to apply our model in scenarios 
where it is believed than short rates will decline consistently 
in the future. Our main objective is to highlight the appearance 
of basic hypergeometric progression within the scope of 
financial mathematics.  
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j .

OBk = L ' 1− l−1( )i( ) 1− l−1( )i2( )... 1− l−1( )ik( )=
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Abstract — Google, Tesla, and GM are companies that 

worry about creating a IA-based stand-alone vehicle. These 

vehicles comprehend the world depends on the data extraction 

from sensors, radars, cameras, among other devices. One detail 

that must be considered is the inconsistencies, which appear to 

be caused by the conditions of the environment in which the 

evidence is placed. This paper applies the concepts of 

Paraconsistent Annotated Evidential Et in an embedded 

software environment from Arduino Uno microcontroller 

board, ultrasonic sensors, DC motors, vehicle chassis available 

in Arduino basic kit, in 1:24 scale. The project is to provide an 

initial knowledge base that can evolve into a more complex 

situation. The scope of this work is limited to the identification 

of obstacles and the application of actions that avoid the 

collision. As proposition: “there are no obstacles ahead”. 

During the tests, the prototype easily recognized obstacles that 

occur by adopting the measurements determined by the twelve 

logical states.  

Keywords—paraconsistent logic; paraconsistent annotated 

logic; autonomous vehicle; Arduino 

I.  INTRODUCTION 

Autonomous vehicles tend to benefit society, referring to 

locomotion, ensuring more safety in critical conditions, 

reducing the stress generated by large cities’ traffic, and 

others. [1] 

 

II. THEORETICAL FOUNDATION 

Decision making is the cognitive process by which a plan of 

action is chosen from several others (based on various 

scenarios, environments, analyzes, and factors) for a 

problem situation. Every decision-making process produces 

a final choice. The output may be an action or an opinion. 

Decision-making refers to the process of choosing the most 

appropriate path in a given circumstance. [2] 

In the real world, we deal with uncertainties, situations of 

inconsistencies, and often we have only a partial recognition 

of facts and objects – However, this does not prevent the 

development of human reasoning that is beyond the binary 

relation of truth and falsity [3]. The need to demonstrate and 

treat contradictory and non-trivial situations led to the 

emergence of an underlying logic for formal systems called 

paraconsistent logics [4]. 

A. Paraconsistent logic 

The necessity to make decisions occurs at a moment of 

deadlock, which there are more than one option to follow. 

We make decisions based on subjective aspects; subjectivity 

has no perfect measure; it is organized, systematically and 

objectively. [2] 

Paraconsistent Logic is among the non-classical logical 

since it contains provisions contrary to some of the basic 

principles of Aristotelian Logic, such as the principle of 

contradiction. Under Aristotelian view, any statement is 

necessarily true or false. According to the Paraconsistent 

Logic, a sentence and its negation may both be true [4]. It 

works with propositions of type p (μ, λ), where p is a 

proposition and (μ, λ) indicate the degrees of favorable 

evidence and contrary evidence, respectively. The pair (μ, λ) 

is called the annotation constant, with the values of μ and λ 

being limited between 0 and 1 [5]. The input data processing 

takes place through the application of minimization and 

maximization connectives between the atomic formulas A 

and B that define the output state, considering the 

propositional ones with their respective degrees of certainty 

and uncertainty pA (μ1, λ1) and pB (μ2, λ2), the highest value 

is obtained between the degrees of certainty (μ1 OR μ2), 

obtaining the resulting degree of certainty (μR), then 

minimizing the degrees of uncertainty (λ1 OR λ2) obtaining 

the degree of resulting uncertainty (λR) [5]. 

Considering the scenario of two expert groups A (E1, E2) 

and B (E3, E4), we can demonstrate the application of the 

OR connective represented by the disjunction A v B: 

E1 (μ1, λ1) OR E2 (μ2, λ2) = (Max {μ1, μ2}, Min {λ1, λ2}) = 

AR (μ1, λ1) 

E3(μ1, λ1) OR E4(μ2, λ2) = (Max {μ1, μ2}, Min {λ1, λ2}) = 

AR (μ2, λ2) 

Then the application of the AND connective between the 

annotated AR and BR signals, representing the AR 

Conjunction ʌ BR: 

R = AR (μ1, λ1) AND BR (μ2, λ2) = (Min {μ1, μ2}, Max {λ1, 

λ2}) = R (μ1, λ1) 

After maximization and minimization, the degrees of 

certainty and uncertainty are obtained by: 
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• Degree of certainty: Gce(μ, λ) = μ - λ 

• Degree of Uncertainty: Gun(μ, λ) = μ + λ - 1 

Two external and arbitrary boundary values (Vcve = Truth 

control value and Vcfa = False control value) determine 

when the resulting degree of certainty is high enough that 

the proposition analyzed is considered totally true or totally 

false. 

Likewise, two external and arbitrary boundary values (Vcic 

= Control value of inconsistency and Vcpa = Control value 

of paracompleteness) determine when the value of the 

degree of uncertainty resulting from the analysis is so high 

that the proposition can be considered totally inconsistent or 

totally paracomplete (Table 1). 

TABLE I.  EXTREME VALUES [6] 

External Limit Values 

Vcve Truth control value 

Vcfa False control value 

Vcic Inconsistency control value 

Vcpa Paracomplete control value 

 

After determining the four limit values and the results of the 

degree of certainty and uncertainty, it is possible to identify 

the resulting logical state. Through the use of such concepts, 

we arrive in Figure 1. 

 

Fig. 1. Diagram with the degrees of certainty and uncertainty, with 

adjustable values of limit control, indicated in the axes [6] 

The logical states which are represented by regions that 

occupy the vertices of the lattice are: True, False, 

Inconsistent and Paracomplete. These are called extreme 

logic states. The output logic states represented by internal 

regions in the lattice that is not the extreme logic states are 

called non-extreme logic states. Each non-extreme logical 

state is named according to its proximity to the extreme 

logic states. 

The following are four logical states extreme Table 2 and 

eight non-extreme Table 3 that make up the lattice of Figure 

2. 

TABLE II.  EXTREME STATES [6] 

Extreme State Symbol 

True V 

False F 

Inconsistent T 

Paracomplete 

TABLE III.  NON-EXTREME STATES [6] 

Non-Extreme State Symbol 

Quasi-true tending to Inconsistent QVT 

Quasi-true tending to Paracomplete QV 

Quasi-false tending to Inconsistent QFT 

Quasi-false tending to Paracomplete QF 

Quasi-Inconsistent tending to True QTt 

Quasi-Inconsistente tending to False QTF 

Quasi-Paracomplete tending to True QV 

Quasi-Paracomplete tending to False QF 

 

 

Fig. 2. Division of the lattice in 12 regions [6] 

The characterization the resulting logical states, the 

following rules are considered (Table 4): 

TABLE IV.  MATHEMATICAL CHARACTERIZATION OF THE STATES [5] 

Condition Resulting State 

If Gcer(μ, λ) ≥ Vcve True 

If Gcer(μ, λ) ≤ Vcfa False 

If Ginc(μ, λ) ≥ Vcic Inconsistent 

If Ginc(μ, λ) ≤ Vcpa Paracomplete 

If   0 ≤ Gcer(μ, λ) < Vcve  

and 0 ≤ Ginc(μ, λ) < Vcic 

and Gcer(μ, λ) ≥ Ginc(μ, λ)   

Quasi-true tending to 

Inconsistent 

If   0 ≤ Gcer(μ, λ) < Vcve  

and 0 ≤ Ginc(μ, λ) < Vcic 

and Gcer(μ, λ) < Ginc(μ, λ)   

Quasi-Inconsistent tending to 

true 

If   0 ≤ Gcer(μ, λ) < Vcve  

and Vcpa < Ginc(μ, λ) ≤ 0  

and Gcer(μ, λ) ≥ |Ginc(μ, λ)|  

Quasi-true tending to 
Paracomplete 

If   0 ≤ Gcer(μ, λ) < Vcve  

and Vcpa < Ginc(μ, λ) ≤ 0  

and Gcer(μ, λ) < |Ginc(μ, λ)|  

Quasi-Paracomplete tending 
to true 

If   Vcfa < Gcer(μ, λ) ≤ 0  

and  Vcpa < Ginc(μ, λ) ≤ 0  
and |Gcer(μ, λ)| ≥ |Ginc(μ, λ)|  

Quasi-false tending to 

Paracomplete 

If   Vcfa < Gcer(μ, λ) ≤ 0  

and  Vcpa < Ginc(μ, λ) ≤ 0  

and |Gcer(μ, λ)| < |Ginc(μ, λ)|  

Quasi-Paracomplete 
tendending to False 

If   Vcfa < Gcer(μ, λ) ≤ 0  

and  0 ≤ Ginc(μ, λ) < Vcic  

and |Gcer(μ, λ)| ≥ Ginc(μ, λ)   

Quasi-false tending to 
Inconsistent’ 
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If   Vcfa < Gcer(μ, λ) ≤ 0  

and  0 ≤ Ginc(μ, λ) < Vcic  
and |Gcer(μ, λ)| < Ginc(μ, λ)   

Quasi-inconsistent tending to 

False 

 

B. Hardware 

Arduino is an open source hardware platform, designed on 

the Atmel AVR microcontroller, which can be programmed 

through a programming language similar to C / C ++, 

allowing the preparation of projects with a basic or no 

programming and electronic knowledge. [7] 

Motors and H-Bridge. The basic principle of DC motors is 

to let the electric current flow through a coil, creating a 

magnetic field. This magnetic field applied to a magnet 

results in the rotation of the shaft, which may be connected 

to wheels, propellers or any other type of gear. [7] 

The H-Bridge is an integrated circuit that facilitates the 

assembly of circuits for the use of motors, allowing the 

movement of these motors clockwise and counter clockwise. 

These plates protect the motor circuit of the others, avoiding 

damages. [9] 

Ultrasonic Sensor. The ultrasonic sensor HC-SR04 allows 

detecting objects that are in the distance between 1 and 200 

cm.  

This sensor emits an ultrasonic signal that reflects in an 

object and returns to the sensor, allowing to calculate the 

distance of the object concerning the sensor, adopting as a 

base the time of trajectory of the signal. [7] 

Chassis. The chosen chassis was the standard model of the 

kits supplied with the Arduino microcontroller. Acrylic 

structure, with three wheels being two associated with 

motors and the third wheel, formed by bearing without 

motor control. [10] 

 

C. Methodology 

 

Experimental implementation of paraconsistent logic 

concepts through the construction of a prototype based on 

the Arduino platform 

III. PROTOTYPE 

Figure 4 shows the circuit with all the components used. 

PowerBank Lotus LT55, lithium battery with a capacity of 

10000mAh @ 3.7V, DC input 5V 2A output DC 5V 1A / 

2.1A output:> 6800MAH> 31.5WH, with two USB inputs 

where the USB1 feeds Arduino and USB2 power the 

motors. 

Two ultrasonic sensors were used, in which one 

corresponded to a "favorable degree of evidence" and the 

other to "opposite degree of evidence." Arduino pins 4, 5, 6 

and seven are used to control the two motors connected to 

H-Bridge. 

The pins 9 (Trigger) and 12 (Echo) is responsible for 

controlling the left-hand ultrasonic () and the pins 10 

(Trigger) and 13 (Echo) the right () pins. 

 

Fig. 3. Prototype Wiring Scheme  

 

Fig. 4. Prototype  

 

 
Fig. 5. Prototype  

IV. EVENT DEFINITIONS 

As proposition, it was considered that there are no obstacles 

in front of the vehicle. 

Maximum distance was taken by sensors: 120 cm. 

For maximum distance, was assigned  value 1 and for  

value 0, in correspondence for the minimum distance, was 

assigned  value 0 and for  value 1. For control values, 
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Vcve was assigned +0 value, 5, for the Vcfa was assigned 

value -0.5, for the Vcic was assigned +0.5 value and for 

Vcpa was assigned value -0.5. Figures 11 and 12 correlate 

extreme and non-extreme logic states with regions that were 

considered as possible obstacle holders. The center line 

comprises the perfectly defined line, where the degree of 

certainty becomes more decisive about the presence of 

obstacles. As it moves away from the center line towards the 

vertical extremes, the level of inconsistency and 

indetermination increases, as a consequence, the actions 

referring to the states near the center line and  tending to 0 

indicate the presence of an obstacle closer and closer to the 

vehicle. Therefore, more actions should be taken. 

 

Fig. 6. Prototype decisions in logic state  

 

Fig. 7. Prototype extreme state  

V. SOURCE CODE 

#include <Ultrasonic.h> 

//Ultrasonic pins 

#define pino_trigger_mi     9        // The sensor sends a 

ultrasonic wave 

#define pino_trigger_lambda 10       // The object reflect this 

wave and 

#define pino_echo_mi        12       // Echo recive the wave 

#define pino_echo_lambda    13 

//Ultrasonic Start Up 

Ultrasonic sensor_mi(pino_trigger_mi, pino_echo_mi); 

Ultrasonic sensor_lambda(pino_trigger_lambda, 

pino_echo_lambda); 

// Control Variables 

float distancia_mi;                 // distance value for sensor_mi 

float distancia_lambda;             // distance value for 

sensor_lambda 

float vcve = 0.5;                   // control variable for true 

float vcfa = -0.5;                  // control variable for false 

float vcic = 0.5;                   // control variable for 

inconsistency 

float vcpa = -0.5;                  // control variable for de 

paracomplete 

// ParaAnaliser 

int paraAnalisador(float mi, float lambda) { 

  // Normalization of evidence degree between 0 and 1 

  mi   = mi / 100;                          // Favorable degree -  0 , 1 

  lambda = lambda / 100;                    // Unfavorable degree -  

0 , 1 

  float Gce  = mi - lambda;                 // Gce - certainty 

degree  - Gce = mi - lambda      

  float Gin  = ((mi + lambda) - 1);         // Gin - uncertainty 

degree - Gin = mi + lambda - 1  

  int estado = 0;                           // Logic States, Extreme and 

Non-Extreme 

  float modulo_Gce;                         // Module Value for 

certainty 

  float modulo_Gin;                         // Module Value for 

uncertainty 

  if (Gce < 0) 

    modulo_Gce = Gce * (-1); 

  else 

    modulo_Gce = Gce; 

  if (Gin < 0) 

    modulo_Gin = Gin * (-1); 

  else 

    modulo_Gin = Gin; 

  // Extreme states definition 

  // Proposition: path ahead is clear 

  if(Gce >= vcve)   

    estado = 1; //true - path is clear 

  else if(Gce <= vcfa) 

         estado = 2; //False - it will hit - Stop, backwards, turn 

right and left 

       else if(Gin >= vcic) 

              estado = 3; //Inconsistent - turn slightly right 

            else if(Gin <= vcpa) 

                   estado = 4; //Paracompleto - turn slightly left   

                 else if( (Gce >= 0) && (Gce < vcve) && (Gin >= 

0) && (Gin < vcic) && (Gce >= Gin)) 

                        estado = 5; //Quasi-true tending to 

inconsistent - Turn right, more than state 3 

                      else if((Gce >= 0) && (Gce < vcve) && (Gin 

>= 0) && (Gin < vcic) && (Gce < Gin)) 

                             estado = 6; //inconsistent tending to true - 

turn slightly left , less than state 5 

                           else if((Gce >= 0) && (Gce < vcve) && 

(Gin > vcpa) && (Gin <= 0) && (Gce >= modulo_Gin)) 

                                  estado = 7; //Quasi-true tending 

paracomplete- turn left, more than state 8 

                                else if((Gce >= 0) && (Gce < vcve) && 

(Gin > vcpa) && (Gin <= 0) && (Gce < modulo_Gin)) 

                                       estado = 8; // paracomplete tending 

to true - turn slightly left , more than state 4 

                                     else if((Gce > vcfa) && (Gce <= 0) 

&& (Gin > vcpa) && (Gin <= 0) && (modulo_Gce >= 

modulo_Gin)) 

                                             estado = 9; // quasi-false tending 

to paraconsistent - Stop, turn left 

                                          else if((Gce > vcfa ) && (Gce <= 

0) && (Gin > vcpa) && (Gce < Gin) && (Gin <= 0)) 

                                                  estado = 10; // paracomplete 

tending to false - Stop, turn left 
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                                               else if((Gce > vcfa) && (Gce 

<= 0) && (Gin >= 0) && ( Gin < vcic) && (Gce >= 

Gin)) 

                                                      estado = 11; // quasi-false 

tending to inconsistent- Stop, turn right  

                                                    else if((Gce <= 0) && (Gce 

< vcfa) && (Gin >= 0) && (Gin < vcic) && (Gce < 

Gin)) 

                                                           estado = 12; 

//inconsistent tending to false - Stop, turn slightly right 

  return estado;  

}   

// H-Bridge variables (L293D) 

int in1 = 7;                        // input 1 

int in2 = 6;                        // input 2 

int in3 = 5;                        // input 3 

int in4 = 4;                        // input 4 

// Distance ajustment 

float ajusteDistancia(Ultrasonic sensor) { 

  float cmMsec; 

  long microsec = sensor.timing(); 

  cmMsec = sensor.convert(microsec, Ultrasonic::CM); 

  if (cmMsec > 120)                 //Define maximum distance 

    cmMsec = 120; 

  else if (cmMsec < 5)              //Define minimum distance 

    cmMsec = 5; 

  return cmMsec; 

} 

void setup() { 

  Serial.begin(9600); 

  pinMode(in1, OUTPUT); 

  pinMode(in2, OUTPUT); 

  pinMode(in3, OUTPUT); 

  pinMode(in4, OUTPUT); 

  pinMode(verde_verdadeiro     , OUTPUT); 

  pinMode(vermelho_falsidade   , OUTPUT); 

  pinMode(amarelo_inconsistente, OUTPUT); 

  pinMode(branco_paracompleto  , OUTPUT);   

} 

// Motor Control 

void para(){ 

    digitalWrite(in2,LOW); 

    digitalWrite(in1,LOW); 

    digitalWrite(in3,LOW); 

    digitalWrite(in4,LOW); 

} 

void anda(){ 

    digitalWrite(in1,LOW); 

    digitalWrite(in3,HIGH); 

    digitalWrite(in2,HIGH); 

    digitalWrite(in4,LOW);  

} 

void re(){ 

    digitalWrite(in1,HIGH); 

    digitalWrite(in3,LOW); 

    digitalWrite(in2,LOW); 

    digitalWrite(in4,HIGH);  

} 

void direita(){ 

    digitalWrite(in1,LOW); 

    digitalWrite(in3,LOW); 

    digitalWrite(in2,HIGH); 

    digitalWrite(in4,LOW);  

} 

void esquerda(){ 

    digitalWrite(in1,LOW); 

    digitalWrite(in3,HIGH); 

    digitalWrite(in2,LOW); 

    digitalWrite(in4,LOW);  

} 

void esquerda_f(){ 

    digitalWrite(in1,HIGH); 

    digitalWrite(in3,HIGH); 

    digitalWrite(in2,LOW); 

    digitalWrite(in4,LOW);  

} 

void direita_f(){ 

    digitalWrite(in1,LOW); 

    digitalWrite(in3,LOW); 

    digitalWrite(in2,HIGH); 

    digitalWrite(in4,HIGH);  

} 

// --- LOOP --- 

void loop() { 

  distancia_mi = map(ajusteDistancia(sensor_mi), 10, 120, 

0, 100); 

  distancia_lambda = map(ajusteDistancia(sensor_lambda), 

10, 120, 100, 0); 

  int estado = 

paraAnalisador(distancia_mi,distancia_lambda); 

  Serial.println(String("Distance-mi : ") + distancia_mi + 

String("| Distance-lambda : ") + distancia_lambda + 

String("| State : ") + estado ); 

  if(estado == 1){ 

    anda(); 

  } 

  else if(estado == 2){ 

    re(); 

  } 

  else if(estado == 3){ 

    direita_f(); 

    anda(); 

    esquerda_f(); 

  } 

  else if(estado == 4){ 

    esquerda_f(); 

    anda(); 

    direita_f(); 

  } 

  else if(estado == 5){ 

    direita_f(); 

  } 

  else if(estado == 6){ 

    direita(); 

  } 

  else if(estado == 7){ 

    esquerda_f(); 

  } 

  else if(estado == 8){ 

    esquerda(); 

  } 

  else if(estado == 9){ 

    para(); 

    esquerda_f(); 
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    delay(500); 

  } 

  else if(estado == 10){ 

    para(); 

    esquerda(); 

  } 

  else if(estado == 11){ 

    para(); 

    direita_f(); 

    delay(500); 

  } 

  else if(estado == 12){ 

    para(); 

    direita(); 

  } 

} 

 

VI. CONCLUSIONS 

During the tests, all the logical states were identified, 

when facing obstacles, in diagonal, the position of the 

sensors did not prove useful and are in need of adjustments. 

Although the hardware limitations, the decision making 

process proved to be efficient in relation of response time, 

deviating obstacles with relative ease, the number of 

collisions presented an index with less than 5% in relation of 

sample universe formed by 123 obstacles. 
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