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Abstract—In a previous work it was described a procedure to
obtain certain classes of spherical tilings with GeoGebra, starting
from a specific subset of spherical segments. This innovative
way of generating spherical tilings has made emerged a class
of monohedral spherical tiling by four spherical pentagons and
classes of dihedral spherical tiling by twelve spherical pentagons.
Here, we shall show how we can generate a class of a 2-
parameter monohedral spherical tilings by convex pentagons,
P∗

(C ,θ1,θ2), made of sixty congruent tiles, changing the gluing
rules of the edge-tiles, being the new ones ruled by a local action
of a particular subgroup of spherical isometries with support
on the regular spherical dodecahedral tiling. In relation to these
new classes of pentagonal tilings, combinatorial and geometric
properties will be given. All monohedral spherical tilings by
pentagons whose pentagonal prototile is of the form a.a.b.b.c
are shown. This family of spherical tilings has emerged as a
result of an interactive construction process using newly produced
GeoGebra tools and the dynamic interaction capabilities of this
software.

Index Terms—Spherical Geometry, Spherical Tilings, Geo-
Gebra.

I. INTRODUCTION

By a spherical tiling we mean a tiling of the 2-dimensional
sphere [13]. A spherical tiling is monohedral if all tiles are
congruent. Additionally, a spherical tiling is edge-to-edge if
no vertex of a tile lies in the interior of an edge of another
tile. In this paper we are interested in the study of new classes
of monohedral and edge-to-edge spherical tilings by spherical
pentagons.

The spherical tilings by congruent rigth triangles were
obtained by Yukako Ueno and Yoshio Agaoka in 1996, [22].
Later, in 2002, the complete classification of monohedral
edge-to-edge triangular spherical tilings was achieved by the
same authors [23]. They have extended the classification of
triangular f-spherical foldings, studied and characterised by
Ana Breda, in 1992, [1].

The classification of spherical tilings by triangles is not yet
completed. In fact, little is known when the condition of being
monohedral or edge-to-edge is dropped out.

The combinatorial study of spherical tilings by twelve
pentagons, with vertex valency greater or equal to three has
been also achieved, see [12] for details. Recently, a family of
spherical monohedral tiling by four congruent and non-convex
spherical pentagons has been characterised [7].

Besides the theoretical mathematical aspects involved in the
study of spherical tilings, they are also object of interest in
other areas of knowledge and in technological applications.
Walter Kohn pointed the year 1984 as the year where a big
surprise in the field of crystallography has occurred. In [15,
p. s70] he mentions: “D. Schechtman and co-workers that
reported a beautiful x-ray pattern with unequivocal icosahedral
symmetry for rapidly quenched AlMn compounds. The ap-
propriate theory was independently developed by D. Levine
and P. Steinhardt, who coined the words quasicrystal and
quasiperiodic. Even more curious was the fact that R. Penrose
(1984) had anticipated these concepts in purely geometric
[terms], the so-called Penrose tilings” [15, p. s70].

Spherical tilings and their properties have been used in
chemistry, for instance, in the study of periodic nanostructures
[11], making emerge new forms of molecular association
notably fullerenes [10], leading to a deeper study of spherical
tilings by triangles, quadrilaterals and pentagons [19]. In the
same line of reasoning other tilings including heptagons [21],
and, heptagons and octagons [20] had emerged. Applications
to new possibilities for new molecular patterns are exposed in
[8], [14], [17], [18], [24]. Nowadays, in engineering there is a
need to merge the computer aided design and computer aided
engineering into a single approach, contributing to an increas-
ing interest in studying relationships between spherical tilings
and spherical Bezier curves [9]. The knowledge of spherical
tilings can also be useful for the developed of some issues
in computational algebra [16]. The facility location problems,
spherical designs and minimal energy point configurations on
spheres [2], [3] are other fields where the study of spherical
tilings is quite useful.

In this paper we intend to extend the knowledge of spherical
tilings describing a set of spherical tilings, here denoted by
T, presenting and characterising, in detail, some subsets of
T composed by pentagonal monohedral spherical tilings with
sixty tiles, providing a continuous deformation path among
elements of this class. We also present a way to obtain all
monohedral spherical tilings by convex spherical pentagons
whose their tile configurations are of the type a.a.b.b.c.



II. RELATED WORK

In previous work, making use of the dynamic capabilities
of GeoGebra, that have been proved to be interesting for our
research, findings about monohedral and dihedral spherical
tilings by spherical convex and non convex pentagons were
obtained.

The creation of GeoGebra tools for spherical geometry, used
initially to obtain some well known spherical tilings, provide
geometric concretization of some new spherical tilings [6].

In fact, GeoGebra gives the possibility of interacting, sim-
ultaneously, with graphic, algebraic and calculus views. It
also gives the chance to create new tools and commands. All
tools was created from the combination of existing tools or
commands. The new tool and the corresponding commands
can be used in new constructions or may be integrated in
the construction of new tools. Spherical GeoGebra tools were
constructed among the purpose to explore, among others
spherical tilings. Whiting these spherical tools we mention the
following ones: Spherical Segment, Minor, Spherical Segment,
Great, SphericalAngleMeasure, Spherical Equidistant Points,
Spherical Compass, Spherical Equilateral Triangle, Spheric-
alTriangleVertice3Angles, SphericalTriangleβABα .

Here, by way of example, we describe how the Spherical
Segment tool was constructed.

Given two non antipodal spherical points A and B, the
minor spherical segment joining them is a great circular arc of
extremes A and B. These spherical segment can be obtained
in GeoGebra using the command SphereSegmentMinor[A,B]
described below (see figure 1).

Tool Name Spherical Segment, minor
Command Name SphericalSegmentMinor

Syntax SphericalSegmentMinor[A,B]
Help Given A,B and a spherical, s, draw the spherical segment joining A to B.

Icon

Script

s=Sphere[(0,0,0), 1]
A=PointIn[s]
B=PointIn[s]
If[Distance[A,B]6=2,CircularArc[(0,0,0), A,B,Plane[(0,0,0),A,B]]]

Figure 1: Construction of the spherical segment minor tool

Observed that if we use, in the the last line of the script of
figure 1, the command Plane[(0,0,0),B,A] we get the greater
spherical segment between two points and, by these way, we
can record a different tool.

These new tools allowed us to get new families of spherical
tilings, namely, the 2-parameter family, B̂ p

q
, p,q∈N, obtained

by a global action of a subgroup of spherical isometries,
which contains the well known antiprismatic tilings see [5].
Later, using similar procedures, the one-parameter family of
tilings, P(C ,τ) with τ ∈]0,π[\{ 1
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see [7]. Recently, the one-parameter family of monohed-
ral spherical non-convex hexagonal tiling with six faces,
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As we shall see, in the next sections, an adequate adaptation

of the previous procedures permit us to characterise a 2-

parameter class of monohedral spherical tiling composed of
sixty congruent pentagonal tiles, P∗(C ,θ1,θ2), with parameters
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with α = cos(θ1) and β = sin(θ1).

III. CONSTRUCTION OF C , THE TILING GENERATION
CELL.

Consider one of the pentagonal tiles, [ABCDE], of
the regular dodecahedral spherical tiling. Without loss of
generality we may assume that the equilateral spherical
pentagon [ABCDE] of angles 2π

3 , has as vertices the points
A,B,C,D,E whose coordinates are:
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The centroid of the prototile is the point
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midpoint of the geodesic joining the spherical points A and
B is MAB = (1,0,0). It should be noted that Ct is determined
by the intersection of the geodesic segments MABD and AMCD
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The side lengths of the spherical triangle [AMABCt ] are:
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Having in mind the use of an adaption to the procedure
performed in previous work and using the dynamic displace-
ment of a point P in the region defined by the spherical
triangle [AMABCt ], we end up, as we shall see, with a class
of pentagonal tilings. In fact, some elements of this class are
monohedral tilings by triangles and quadrilaterals. They are
limit cases of the pentagonal ones, see Fig.2.

Figure 2: Some elements of P∗(C ,θ1,θ2), monohedral spherical
tilings by triangles, kites, quadrilaterals and pentagons.

Consider the set
C = {X ∈ S2 : X ∈ıPA∨X ∈ P̆MAB∨X ∈ P̃Ct}, P ∈ [AMABCt ],
which represents the starting cell of the generating tilings. In
Figure 3, we illustrate a tiling obtained through the generating
procedure described bellow, with θ1,θ2 the midpoints of the
corresponding admissible intervals.

Let θ1 be an angle in [0, l1]. To obtain a dynamic variation
of P in all points of the fundamental region, [AMABCt], let us



(a) P∗
(C ,θ1,θ2) (b) Cell C in the and planar graph.

Figure 3: Element of the monohedral spherical tiling family
P∗(C ,θ1,θ2) and one of its planar graph.

take an arbitrary point Xθ1 ∈˚�OMAbCt and consider the point
X̂θ2 obtained by the intersection of the plane z = sinθ1 with
the spherical segment ÃCt. Let P be an arbitrary point in the
spherical segment Ẋθ1 ˆXθ2. Denoted by θ2 the X̄θ1P, see figure
4.

Figure 4: Detail of construction of P in C of P∗(C ,θ1,θ2).

Thus, P is in the intersection of the planes OMABCt
and z = sinθ1 with the sphere. Consequently, the co-
ordinates of P fulfil the equations: x2 + y2 + z2 = 1;
z = sinθ1; − 1
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Having in account the definition of X̂θ2, we may conclude
that its coordinates are:
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and sin(θ2), respectively.

Accordingly, (cos(θ1)cos(−θ2),cos(θ1)sin(−θ2),sin(θ1))
was the coordinates of point P, that is one of the vertices of
the generated tiling.

IV. FROM C TO THE P∗(C ,θ1,θ2)

Let us consider the set of the following eighth spherical
rotations:
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Consider:
C 0 = C (graphically represented in figure 3(b)),
C 1 =
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C 2 = R(MAB,π)(C
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Under these conditions the set
⋃6

i=0 C i define the spherical
class of tilings P∗(C ,θ1,θ2).

Besides each tile has internal angles of the form
( 2π

3 ,∗i, 2π

5 ,∗i,∗i), where the ∗i, i ∈ {1,2,3}, are uniquely
determined for each value of θ1,θ2.

The pentagonal tilings in P∗(C ,θ1,θ2) are composed by sixty
pentagonal congruent tiles, and so the sum of the internal
angles of each tile is 13π

5 .
Thus, given the coordinates of the points A, P, MAB and Ct,

we may compute the angle measure defined by them:
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and so all the internal angle measure of the tile are known.

The dynamic process described above allow us to charac-
terise all the elements of the family P∗(C ,θ1,θ2). First, we note
that there are elements in this family which do not correspond
to pentagonal spherical tilings. In fact, only angles, θ1 and θ2,
taken in the interior of their admissibility intervals correspond
to pentagonal monohedral tilings, being these composed by
sixty spherical tiles (as we can see one example in Fig.
3(a)). The remaining cases correspond to monohedral spherical
tilings by triangles and quadrilaterals.

The elements of P∗(C ,θ1,θ2) with θ1 ∈ ]0, l1[ and θ2 ∈ ]0, l2[
belong to a family of a two parameter not yet described in the
literature.

Any element of this family is composed by sixty 60 spher-
ical pentagons, with 150 edges and 92 vertices, 12 of them of
valence 5 and the others 80 vertices of valence 3, and have
the tile configuration y.y.r.r.(2b).

The process here described can be applied generate spher-
ical tilings supported in the others regular spherical tilings, i.e,
tetrahedral, T ; hexahedral, H ; octahedral, O; and icosahed-
ral, T .

We get three monohedral spherical tilings by pentagon,
P∗
(CK ,θK

1 ,θK
2 )

where K ∈ {T ,H ,O,I }. For each CK , we
proceed changing the gluing rules of the edge-tiles according
a local action of particular subgroups of spherical isometries
related with the corresponding regular K spherical tiling. It
should be note that: P∗

(CD ,θD
1 ,θD

2 )
and P∗

(II ,θI
1 ,θI

2 )
defines

the same families of tilings; P∗
(CH ,θH

1 ,θH
2 )

and P∗
(CO ,θO

1 ,θO
2 )

defines the same families of tilings .

P∗
(CT ,θT

1 ,θT
2 )

, f → 12,v→ 83.123 P∗
(CH ,θH

1 ,θH
2 )

, f → 24,v→ 64.(8+24)3

P∗
(CO ,θO

1 ,θO
2 )

, f → 24,v→ 64.(8+24)3 P∗
(CI ,θI

1 ,θI
2 )

, f → 60,v→ 803.125

Figure 5: Elements of P∗
(CK ,θK

1 ,θK
2 )

,K ∈ {T ,H ,O,I }.

These procedures led to the characterisation of three class of
monohedral pentagonal spherical tilings, where all the tilings
have the tile configuration y.y.r.r.(2b), whose some geometrical
and combinatorial characterisation are specified in figure 5.

V. CONCLUSION

Here, we have shown how a suitable adaptation of a
procedure for generating spherical tilings starting from a cell,
composed by three spherical arcs, and described in previous
work, with support in the regular dodecahedral spherical tiling,
led to a two parameter family of pentagonal monohedral tiling
of the sphere with sixty faces. This approach was possible
by mean of computational tools. We also show some of the
results of the adaptation of the procedure here described in
order to present all the monohedral pentagonal tiling with the
tile configuration y.y.r.r.(2b). Next step will be the detailed
description of these new pentagonal tilings.



This work highlights the potential of the geometric approach
supported by a dynamic geometry software for the search
and analysis of spherical tilings, revealing connections that
a combinatorial approach would not have.
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