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Abstract—In this paper we present a survey in the theory
of stability of one-dimensional discrete-time dynamical systems.
The main goal is to write a document that may be used as a
pedagogical instrument in stability analysis for researchers that
are not familiar with these techniques. Hence, we present the
principal definitions and results in this field and a collection of
classical population models widely used in population ecology.
The dynamics of these models is, in general, a time-parameter
dependent and the idea is to describe what factors in the
parameter affect population size and how and why a population
changes over time. Moreover, the presented techniques may be
extended for different fields of science since the addressed results
and examples are standard and may be adapted for a particular
situation.

Index Terms—Local Stability, Global Stability, Population
Dynamics, Applications

I. INTRODUCTION

One-dimensional discrete models are an appropriate math-
ematical tool to model the behavior of populations with
non-overlapping generations. This subject has been intensely
investigated by different researchers and is part of the solid
foundations of the modern theory of discrete dynamical sys-
tems.

A discrete dynamical system (or difference equation) is a
relation governed by the rule

xn+1 = fn(xn), n = 0, 1, 2, . . . , (1)

where x ∈ X and X is a topological space. Here, the orbit of
a point x0 is generated by the composition of the sequence of
maps

f0, f1, f2, . . . .

Explicitly,

x1 = f0(x0),

x2 = f1(x1) = f1 ◦ f0(x0),

...
xn+1 = fn ◦ fn−1 ◦ . . . ◦ f1 ◦ f0(x0),

...

If f0 = f1 = f2 = . . ., then the equation is said to be
autonomous, otherwise it is non-autonomous. If the sequence
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of maps is periodic, i.e., fn+p = fn, for all n = 0, 1, 2, . . .
and some positive integer p > 1, then we deal with non-
autonomous periodic difference equations. Systems where the
sequence of maps is periodic, model population with fluctua-
tion habitat, and they are commonly called periodically forced
systems.

Notice that the non-autonomous periodic difference equa-
tion (1) does not generate a discrete (semi)dynamical system
[6] as it may not satisfy the (semi)group property. One of the
most effective ways of converting the non-autonomous dif-
ference equation (1) into a genuine discrete (semi)dynamical
system is the construction of the associated skew-product
system as described in a series of papers by Elaydi and Sacker
[6]–[8], [10]. It is noteworthy to mention that this idea was
originally used to study non-autonomous differential equations
by Sacker and Sell [22].

An ordered set of points Cr = {x0, x1, . . . , xr−1} is an
r−periodic cycle in X if

f(i+nr) mod p(xi) = x(i+1) mod r, n = 0, 1, 2, . . . .

In particular,

fi(xi) = xi+1, 0 ≤ i ≤ r − 2,

and

ft(xt mod r) = x(t+1) mod r, r − 1 ≤ t ≤ p− 1.

It should be noted that the r−periodic cycle Cr in X
generates an s−periodic cycle on the skew-product X × Y
(Y = {f0, f1, . . . , fp−1}) of the form

Ĉs = {(x0, f0), (x1, f1), ..., (x(s−1) mod r, f(s−1) mod p)},

where s = lcm[r, p] is the least common multiple of r and p.
To distinguish these two cycles, the r−periodic cycle Cr

on X is called an r−geometric cycle (or simply r−periodic
cycle when there is no confusion), and the s−periodic cycle
Ĉs on X×Y is called an s−complete cycle. Notice that either
r < p, or r = p or r > p.

Define the composition operator Φ as follows

Φin = fn+i−1 ◦ . . . ◦ fi+1 ◦ fi.

When i = 0 we write Φ0
n as Φn.



As a consequence of the above remarks it follows that
the s−complete cycle Ĉs is a fixed point of the composition
operator Φis. In other words we have that

Φis(xi mod r) = xi mod r.

If the sequence of maps fi, i = 0, 1, 2, . . . is a parameter
family of maps one-to-one in the parameter, then by [11] we
have that xi mod p is a fixed point of Φp.

Before ending this short introduction, we mention that in
section II we present the principal results concerning the
stability of fixed points in autonomous discrete dynamical
systems. The results presented in this section may be extended
to periodic systems substituting the map f for the composition
operator Φ. The next two sections are devoted to applica-
tions. In section III we present the principal models for one-
dimensional population dynamics. In the next section we refer
some studies in non-autonomous periodic equations.

Finally, this survey may be used as a pedagogical instrument
in stability analysis for students or researchers that are not
familiar with these techniques and aims to study discrete
dynamical systems. Moreover, it may be used for researchers
in other fields that are familiar with some basic tools in
Analysis. The presented examples in population dynamics are
known and may be extended for other areas following the
exposed techniques.

II. GENERAL RESULTS

Consider an interval I ⊆ R and an autonomous map
f : I → I . A point x∗ ∈ R is said to be a fixed point (or
equilibrium point) of f if f(x∗) = x∗, and given x0 ∈ R , we
define its orbit O(x0) as the set of points

O(x0) = {x0, f(x0), f2(x0), f3(x0), . . .},

where fn = f ◦fn−1, for n ∈ N, where N is the set of positive
integers and ◦ represents the composition of functions.

One of the main objectives of the stability theory of discrete
dynamical systems is to study the behavior of orbits when the
starting points are near fixed points.

Let f : I → I be a map and x∗ be a fixed point of f , where
I is an interval of real numbers. Then:

1) The fixed point x∗ is said to be locally stable if, for any
ε > 0, there exits δ > 0 such that, for all x0 ∈ I with
|x0−x∗| < δ, we have |fn(x0)−x∗| < ε, for all n ∈ N.
Otherwise, the fixed point x∗ will be called unstable.

2) The fixed point x∗ is said to be attracting if there exists
η > 0 such that |x0−x∗| < η implies lim

n→∞
fn(x0) = x∗.

3) The fixed point x∗ is said locally asymptotically stable
if it is both stable and attracting. If in the previous item
η = ∞, then x∗ is said to be globally asymptotically
stable.

Fig. 1 illustrates the idea behind the definition of stability.
Working with concrete examples, the definition of stability

may not be the most practical tool to show the stability of a
fixed point. There exists a simple but powerful criterion for
knowing the local stability of fixed points. We may divide the

Fig. 1. Stable vs unstable fixed point. In the first case, the orbit of a starting
point x0 in a neighborhood δ of x∗ stay in a neighborhood ε of x∗ while in
the second case, after certain order, the orbit start to be out of a neighborhood
ε of x∗.

fixed point into two categories: hyperbolic and nonhyperbolic.
A fixed point x∗ of a map f is said to be hyperbolic if
|f ′(x∗)| 6= 1, where f ′ denotes the derivative of the function
f . Otherwise, the fixed point is nonhyperbolic.

Theorem(Elaydi [4], page 25):
Let x∗ be a hyperbolic fixed point of a map f , where f is

continuous and differentiable at x∗. The following statements
hold true:

1) If |f ′(x∗)| < 1, then x∗ is locally asymptotically stable.
2) If |f ′(x∗)| > 1, then x∗ is unstable.
The stability criteria for nonhyperbolic fixed points are more

complex and are summarized in the following theorem. Before
presenting it we need to introduce the notion of Schwarzian
derivative.

The Schwarzian derivative, Sf , of a function f , is defined
by

Sf(x) =
f ′′′(x)

f ′(x)
− 3

2

(
f ′′(x)

f ′(x)

)2

.

In particular, when f ′(x∗) = −1, we have Sf(x∗) =
−f ′′′(x∗)− 3

2 [f ′′(x∗)]
2.

Theorem(Elaydi [4], pages 28-30): Let x∗ be a fixed point
of a map f and f ′, f ′′ and f ′′′ be continuous at x∗.

1) Let f ′(x∗) = 1.
a) If f ′′(x∗) > 0, then x∗ is unstable but semi-stable

from the left.
b) If f ′′(x∗) < 0, then x∗ is unstable but semi-stable

from the right.
c) If f ′′(x∗) = 0 and f ′′′(x∗) > 0, then x∗ is

unstable.
d) If f ′′(x∗) = 0 and f ′′′(x∗) < 0, then x∗ is locally

asymptotically stable.
2) Let f ′(x∗) = −1.

a) If Sf(x∗) < 0, then x∗ is locally asymptotically
stable.

b) If Sf(x∗) > 0, then x∗ is unstable.
In applications it is important to know whenever the con-

ditions of local stability imply global stability. The precedent
results gives conditions on local stability. In 1955 W. Coppel
stated the following result:



Theorem(Coppel [1]): Let I = [a, b] ⊆ R and f : I → I
be a continuous map. If the equation f (f (x)) = x has no
roots, with the possible exception of the roots of the equation
f (x) = x , then every orbit under the map f converges to a
fixed point.

Coppel’s theorem is not enough to ensure global stability. It
is necessary to have uniqueness of the fixed point. In certain
cases, depending the model we can establish global stability
since only a unique fixed point will play a rule, as we will
illustrate in the next sections.

III. AUTONOMOUS MODELS

In this section we apply the results stated in the previous
section to some important autonomous models in applications.
We will start by the Ricker model which is a fishing model.

Example I - Ricker model: The Ricker model is given by

xn+1 = xne
p−xn ,

where xn ≥ 0 is the density of the population at the period of
time n and p > 0 is the carrying capacity of the population.

The map of the model is given by f(x) = xep−x. There
are two fixed points, namely x∗ = 0 and x∗ = p. The origin
is an unstable fixed point provide that f ′(0) = ep > 1. The
positive fixed point is locally asymptotically stable whenever
0 < p ≤ 2 and unstable when p > 2. Notice that |f ′(p)| <
1 implies that 0 < p < 2 and since f ′(2) = −1 we have
Sf(2) = −1 < 0.

Now, solving the equation f(f(x)) = x, one can show that
there are only two solutions whenever 0 < p ≤ 2, the origin
and x = p, precisely the fixed pints of the map f . Since the
origin is unstable, and x∗ = p is the unique fixed point in
the positive real line, we have that the conditions of local
stability of x∗ = p will implies global stability with respect
to the positive real line. This means that every orbit starting
at x0 > 0 will converge to x∗ = p whenever 0 < p ≤ 2.

In Figure 2 is presented a cobweb diagram for this model.
Notice that, a cobwebbing diagram is a geometrical toll where
one can see the location of the values in the orbit of a starting
point x0. These values are located in the diagonal line y = x.
In this case, it is clear that the orbit of x0 = 0.1 converge to
x∗ = 1.73.

It follows a difference equation which is the discrete version
of the Verhulst model [24], [25] also called logistic map,
a population model well known and studied in this field.
We recall that the dynamics of this equation has played a
paramount importance and it is present in the foundations and
in the development of the modern theory of discrete dynamical
systems.

Example II - Logistic model: The 1D logistic equation is
given by

xn+1 = µxn(1− xn),

where xn ∈ [0, 1] is the density and µ ∈ (0, 4) is a control
parameter that represents a combined rate for reproduction and
starvation.

We remark that this equation is found to be the most suitable
model for the study of the surplus production of the population
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Fig. 2. Cobweb diagram for the Ricker model xn+1 = xnep−xn when
p = 1.73 and the starting point x0 = 0.1. This example illustrates that
the origin is an unstable fixed point and the positive fixed point is globally
asymptotically stable.

biomass of species in the presence of limiting factors such
as food supply or disease. The above logistic model can
possess stable, unstable, periodic and chaotic behaviors and
thus receives wide attention due to the great implications of it
in chaos theory (see May [20] for details at this point).

Since the map is given by f(x) = µx(1 − x), the model
has two fixed points, the origin and x∗ = µ−1

µ .
From the relation f ′(0) = µ we have that the origin is

locally asymptotically stable when 0 < µ < 1 and unstable
when µ > 1. When µ = 1 we have f ′(0) = 1. It follows that
f ′′(0) = −2 < 0 and thus the origin is semi-stable from the
right.

It is a straightforward computation to see that x∗ = µ−1
µ

is locally asymptotically stable whenever 1 < µ ≤ 3 and
unstable when µ ∈ (0, 1] ∪ (3, 4).

Following a similar idea as the precedent example, one can
show that the solutions of the equation f(f(x)) = x are x = 0
and x∗ = µ−1

µ whenever 0 < µ ≤ 3. There are two cases: (i)
x∗ = 0 is globally asymptotically stable when 0 < µ ≤ 1
provide that it is the unique fixed point of f in [0, 1] and
(ii) when 1 < µ ≤ 3 the fixed point x∗ = µ−1

µ is globally
asymptotically stable with respect to the interior of the unit
interval since it is the unique fixed point in this region.

Example III - Beverton-Holt model: The 1D Beverton-
Holt map is given by

f(x) =
rKx

K + (r − 1)x
,

where x ≥ 0 is the density, K > 0 is the carrying capacity
and r > 0 is the growth rate of the population. There are two
fixed points, the origin which is locally asymptotically stable
when 0 < r ≤ 1 and a positive fixed point x∗ = K which is
locally asymptotically stable whenever r > 1.

In this example we do not need to apply Coppel’s theorem to
establish global stability since the model is monotone. Hence,
the origin is globally asymptotically stable with respect to
the interval [0,K) whenever 0 < r ≤ 1, and x∗ = K is
globally asymptotically stable with respect to the positive real
line whenever r > 1.



0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

f HxL

Fig. 3. Cobweb diagram for the logistic map when x0 = 0.15 and µ = 2.6.
An orbit of starting point in the interior of the unit interval converges to the
positive fixed point since it is globally stable in this set.
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Fig. 4. Cobweb diagram for the Beverton-Holt model when r = 2 and
K = 2. In this case we present the orbit of two initial points. It illustrates the
unstability of the origin and the globally stability of the positive fixed point.

Example IV - Ricker with Allee effect: The modified
Ricker model with Allee effect is given by

xn+1 = x2
ne
p−xn ,

where xn ≥ 0 is the density of the population and p > 0 is
the carrying capacity.

The fixed points of the model are the solutions of the
equation x2ep−x = x. From this relation it follows x∗ = 0 and
xep−x = 1. This last equation has no solution if p < 1, exactly
one solution x∗ = 1 if p = 1 and two solution, x∗ = A < 1
and x∗ = K > 1 if p > 1. In population dynamics these last
fixed points are known as threshold point (A) and carrying
capacity (K).

Hence, there are 3 cases to consider:

(i) p < 1. In this case the origin is a globally asymptotically
stable fixed point provide that it is the unique fixed point
in the non-negative real line. Notice that f ′(0) = 0.

(ii) p = 1. There are two fixed points in the model, the
origin and x∗ = 1. The origin is locally asymptotically
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Fig. 5. Cobweb diagram of the Ricker model with Allee effect when the
parameter p = 2. It illustrates the local stability of the origin and the carrying
capacity and the instability of the threshold point.

stable since f ′(0) = 0 and its basin of attraction1 is
the set [0, 1[∪]Ar, +∞[, where Ar is the right pre-
image of 1, i.e., the greatest solution of the equation
x2e1−x = 1 which is in this case ≈ 3.51286. The fixed
point x∗ = 1 is semistable from the right since f ′(1) = 1
and f ′′(1) = −1 < 0. Its basin of attraction is the set
[1, Ar].

(iii) p > 1. There are three fixed points, the origin, x∗ =
A < 1 and x∗ = K > 1. The origin is locally asymp-
totically stable fixed point and its basin of attraction is
the set [0,Ar[∪]Ar, +∞[, where Ar is the right pre-
image of A.
In order to determine the stability of A and K notice
that

f ′(x) = x(2− x)ep−x,

and for the non-trivial values we have

f ′(x) =
(2− x)

x
f(x).

Hence |f ′(A)| = |2−A| and |f ′(K)| = |2−K|. Since
0 < A < 1 and K > 1 we have that A is an unstable
fixed point whereas K is locally asymptotically stable
whenever 1 < K < 3. If this is the case, then its basin
of attraction is ]A,Ar[.

Example V - Polynomial with Allee effect: Let us consider
the difference equation given by

xn+1 = µnx
kn
n (1− xn) , (2)

where xn ∈ [0, 1], µn > 0 and kn = 2, 3, 4, . . . for all non
negative integer n. For more details about this equation please
see [18].

Equation (2) may be represented by the map

fn(x) = µnx
kn (1− x) .

Notice that when µn = µ and kn = 1 for all n, Equation (2)
is the logistic equation studied in Example III.

In order to insure that xn ∈ I = [0, 1] for all n, we make
the following assumption concerning the parameters

1The basin of attraction (or the stable set) of a fixed point consists of all
points that are forward asymptotic to it.



H: µn ≤
(
kn + 1

kn

)kn
(kn + 1), n = 0, 1, 2 . . . .

Assumption H guarantees that all the orbits in (2) are
bounded. Furthermore, it guarantees that fn maps the interval
I into the interval I for all n = 0, 1, 2 . . ..

Let us now study the dynamics of the particular map
f (x) = µxk (1− x), with x ∈ I, µ > 0 and k = 2, 3, . . ..
To find the fixed points of f we determine the solutions of
the equation µxk(1 − x) = x. After eliminating the trivial
solution, x = 0, the positive fixed points are the solutions of

µxk−1 (1− x) = 1, (3)

or equivalently

ln(µ) = − (k − 1) lnx− ln (1− x) . (4)

Letting g(x) = − (k − 1) lnx−ln (1− x), we see that g(x) >
0 for all x ∈ (0, 1). Moreover, g is convex in the unit interval
since g′(x) > 0, for all x ∈ I , and attains its minimum at
g(cg) where cg = k−1

k is the unique critical point of g in the
unit interval. Let Oµ be the immediate basin of attraction of
the origin.

1) If g (cg) > ln(µ), then Eq. (4) has no solution. Hence,
x∗ = 0 is the unique fixed point of the map f whenever

µ < k
(

k
k−1

)k−1

. Under this scenario x∗ = 0 is
globally asymptotically stable, given that it is the unique
fixed point in I . Notice that at the origin we have
f ′(0) = 0 and that Oµ = [0, 1].

2) If g (cg) = ln(µ), then Eq. (4) has a unique solu-
tion, x∗ = k−1

k = cg . Hence, the map f has a

unique positive fixed point when µ = k
(

k
k−1

)k−1

.
In this case and using (3), we obtain |f ′ (x∗)| = 1
and |f ′′ (x∗)| = −k2 < 0, that allows us to con-
clude that x∗ is an unstable fixed point, but semi-
stable from the right. Moreover, its immediate basin
of attraction is the set

[
x∗,max f−1({x∗})

]
where

f−1({x∗}) is the pre-image of {x∗}. Notice that Oµ =
I \
[
x∗,max f−1({x∗})

]
.

3) If g (cg) < ln(µ), then Eq. (4) has two positive solutions.
Hence, the map f possesses two positive fixed points

whenever µ > k
(

k
k−1

)k−1

. The smaller, denoted as
Aµ, is known as a threshold point and the greater,
denoted by Kµ, is known as a carrying capacity. Under
this scenario, the fixed point Aµ is always unstable and
the fixed point Kµ is locally asymptotically stable in
the interval

(
Aµ,max f−1({Aµ}

)
if
∣∣k − µKk

µ

∣∣ < 1.
Moreover, Oµ = [0,Aµ) ∪

(
max f−1({Aµ}), 1

]
.

Notice that the sequence ak =

(
k + 1

k

)k
(k + 1) that is

used to define Assumption H is increasing for k = 2, 3, . . ..
We now resume the precedent ideas in the following result,
for a general integer k = 2, 3, . . .:

Theorem: Let f(x) = µxk(1− x), k = 2, 3, . . .. Then the
following yields:

1) If µ < k
(

k
k−1

)k−1

, then x∗ = 0 is a globally
asymptotically stable fixed point of f and its basin of
attraction is the unit interval.

2) If µ = k
(

k
k−1

)k−1

, then the map has two fixed
points, the origin and a positive fixed point x∗ =
k−1
k . This last one is locally asymptotically stable

from the right and its immediate basin of attraction
is the set

[
x∗,max f−1({x∗})

]
. Moreover, Oµ = I \[

x∗,max f−1({x∗})
]
.

3) If µ > k
(

k
k−1

)k−1

, then the map has three fixed points,
the origin, a threshold fixed point Aµ and a carrying
capacity Kµ such that Aµ < Kµ. The threshold fixed
point is always unstable and if |k−µKk

µ| < 1 the carry-
ing capacity is locally asymptotically stable with a basin
of attraction given by the set

(
Aµ,max f−1({Aµ})

)
.

Moreover, Oµ = I \
[
Aµ,max f−1({Aµ})

]
.

Remark: Before ending this example let us have a particular
look in the dynamics of the autonomous equation when k = 2,
i.e., the dynamics of the modified logistic equation with Allee
effect when the map is given by f(x) = µx2(1− x).

1) If µ < 4, then the origin is a globally asymptotically
stable fixed point provided that it is the unique fixed
point in the unit interval.

2) If µ = 4, then the map possesses two fixed points, the
origin and x∗ = 1

2 . The basin of attraction of the origin
is

O4 =

[
0,

1

2

)
∪

(
1 +
√

5

4
, 1

]
, (5)

while the basin of attraction of the positive fixed point
is
[

1
2 ,

1+
√

5
4

]
. Notice that x∗ = 1

2 is a fixed point semi-
stable from the right.

3) If 4 < µ, then the map has three fixed points, the
origin, the threshold point Aµ = 1

2

(
1−

√
µ−4
µ

)
and

the carrying capacity Kµ = 1
2

(
1 +

√
µ−4
µ

)
.

It is a straightforward computation to see that, when
µ > 4,

|f ′(Aµ)| = 3 +
µ

2

(
−1 +

√
µ− 4

µ

)
> 1.

Hence, the fixed point Aµ is unstable.
Similarly, we see that

|f ′(Kµ)| =
∣∣∣∣3− µ

2

(
1 +

√
µ− 4

µ

)∣∣∣∣ < 1 iff 4 < µ <
16

3
.

When µ = 16
3 we have f ′(Kµ) = −1. Forward compu-

tations show that the Schwarzian derivative evaluated at
the fixed point is negative, i.e., Sf(Kµ) < 0. It follows
that the fixed point Kµ is asymptotically stable. Thus,
the fixed point x∗ = Kµ is locally asymptotically stable
whenever 4 < µ ≤ 16

3 and its basin of attraction is the
set
(
Aµ, max f−1({Aµ})

)
. Moreover,

Oµ = [0,Aµ) ∪
(
max f−1({Aµ}), 1

]
. (6)



IV. NON-AUTONOMOUS MODELS

In this section we present some studies for particular peri-
odic difference models. We notice that the study of this kind
of equations is quite complicate and in certain cases it is not
possible to find explicitly the fixed points due the complexity
of computations, specially nontrivial fixed points.

Example VI - Periodic Ricker map:
Let us consider the periodic difference equation given by

the following equation

xn+1 = Rn(xn),

where the sequence of maps Rn(x) is given by

Rn(x) = xern−x, n = 0, 1, 2 . . . , (7)

x ≥ 0 is the density of the population and rn > 0, n =
0, 1, 2 . . . is the sequence of individual carrying capacities.

Notice that the local stability condition for each individual
map Ri(x) is given by

0 < ri ≤ 2, i = 0, 1, 2 . . . ,

as is shown in Example III.
In order to have periodicity we require that Rn+p = Rn,

for all n = 0, 1, 2, . . ., i.e., the sequence of parameters satisfies
rn = rn mod p, for all n. It is clear that the composition map

Φp(x) = Rp−1 ◦ . . . ◦R1 ◦R0(x)

is continuous in R+
0 .

In [21] R. Sacker showed that the map Φp has a globally
asymptotically stable fixed point whenever the periodic se-
quence of parameters satisfies 0 < rn ≤ 2, n = 0, 1, 2, . . . .
Since the sequence of maps is one-to-one relative to the pa-
rameters, it follows from [11] that the globally asymptotically
stable fixed point of Φp generates a globally asymptotically
stable p−periodic cycle of the form

{x0, x1, . . . , xp−1} .

Using the chain rule of derivative it follows that

Φ′p(x0) = R′p−1(xp−1)R′p−2(xp−2) . . . R′1(x1)R′0(x0).

Since R′i(x) = (1−x)epi−x and the dynamics of the periodic
orbit is xi+1 = xie

ri−xi , i = 0, 1, 2 . . . , p− 1, the stability
condition of the periodic orbit is

p−1∏
i=0

|1− xi| < 1. (8)

Later on, Elaydi et al. [12] noticed that the region of stability
in the parameter space determined by Sacker may be larger
as it is shown in Fig. 6 for a 2−periodic equation. They have
been determined the boundary of the region and in a recent
paper, Liz [19] showed global stability in this region using the
following result:

Theorem(Corollary 2.9 in [13] by El-Morshedy & López):
Let a ≥ 0, b > a and g : (a, b)→ [a, b] be a continuous map
with a unique fixed point x∗ such that (g(x)−x)(x−x∗) < 0

S
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Fig. 6. Region S where the 2−periodic Ricker equation has a globally
asymptotically stable 2−periodic cycle. The curves are part of the region
of global stability. Once the parameters crosses these curves the 2−periodic
cycle becomes unstable.

for all x 6= x∗. Assume that there are points a ≤ c < x∗ <
d ≤ b such that the restriction of g to (c, d) has at most
one turning point and whenever it makes sense, g(x) ≤ g(c)
for every x ≤ c, and g(x) ≥ g(d) for every x ≥ d. If g
is decreasing at x∗, assume additionally that Sg(x) < 0 for
all x ∈ (c, d) except at most one critical point og g and
−1 < g′(x∗) < 0. Then the fixed point x∗ is globally stable.

It remains as an open problem to show global stability for
p ≥ 3.

Example VII - Periodic Beverton-Holt model:
Let xn+1 = Bn(xn), n = 0, 1, 2, . . . where the map Bn

is given by

Bn(x) =
rKnx

Kn + (r − 1)x
. (9)

Here x ≥ 0 is the density, the parameter r > 1 is the grow
rate and the sequence of parameters Kn > 0 are the carrying
capacities of each individual population. In Example III is
established the conditions for stability of each individual map
Bn.

Let us now assume that Kn+p = Kn for all n and p > 1,
i.e., the sequence of maps Bn is p−periodic. Since each
individual map is monotone and the composition of monotone
maps is monotone, we have that Φp is a monotone map.
Moreover, the orbits are bounded since Bn(x) < r

r−1Kn for
all n.

It follows from the Brouwer’s fixed point theorem that Φp
has a fixed point. Due the monotonicity we have that the fixed
point is globally asymptotically stable. This fixed point of Φp
generates a globally asymptotically stable p−periodic cycle in
the original equation (9) of the form

{x0, x1, . . . , xp−1} .

In a famous conjecture, Chushing and Hensen [2], [3] stated
that the average of the individual carrying capacities is less
than the average of the numbers in the p−periodic cycle, i.e.,

K0 +K1 + . . .+Kp−1

p
<
x0 + x1 + . . .+ xp−1

p
.



Using Jensen’s inequality some researchers solved positively
this conjecture. To cite few [5]–[10], [15], [16], [23].

In conclusion, forcing the system may be beneficial for the
population since the carrying capacity of the periodic popula-
tion will be greater than the individual carrying capacities.

Example VIII - Generalized periodic logistic:
We start this example presenting a result related to the non-

autonomous equation (2) when k = 2 (although it may be
extended for other values of the parameter k as well). It is not
hard to prove the following:

Lemma: Consider the non-autonomous difference equation
given by

xn+1 = µnx
2
n (1− xn) , (10)

where xn ∈ [0, 1], µn ∈
(
0, 27

4

]
, for n = 0, 1, 2 . . ., and Oµ

the immediate basin of attraction of the origin. Then

4 ≤ µ1 ≤ µ2 ≤
27

4
⇒ O4 ⊇ Oµ1 ⊇ Oµ2 ⊇ O 27

4
, (11)

where O4 is given by (5) and

O 27
4

=

[
0,

9−
√

33

18

)
∪
(

max f−1
({

A 27
4

})
, 1
]
, (12)

where max f−1
({

A 27
4

})
≈ 0.971 62.

Let us now turn our attention to the non-autonomous
periodic equation (2). We will study the case where the
sequence of maps is p−periodic, i.e., when fn+p = fn,
for all n = 0, 1, 2, . . .. Under this scenario, equation (2) is
p−periodic.

The dynamics of the non-autonomous p−periodic equation
(2) is completely determined by the following composition
operator

Φp = fp−1 ◦ . . . ◦ f1 ◦ f0.

From assumption H it follows that Φp(I) ⊆ I with Φp(0) = 0
and Φp(1) = 0. Hence, by the Brouwer’s fixed point theorem
[14], the composition operator Φp has a fixed point in the unit
interval.

It is clear that x∗ = 0 is a locally asymptotically stable fixed
point of Φp provided that |Φ′p(0)| = 0. Now, if Φp(x) < x,
for all x ∈ (0, 1), then x∗ = 0 is the unique fixed point of
the composition operator Φp in the unit interval. In this case,
x∗ = 0 is a globally asymptotically stable fixed point and its
basin of attraction is the entire unit interval. This is the case
where local stability implies global stability in the sense that
every orbit of x0 ∈ I converge to the origin.

Notice that, if CΦp is the set of critical points of Φp, i.e.,
if CΦp

contains all the solutions in the unit interval of the p
equations Φi(x) = ci, i = 0, 1, . . . , p − 1, where ci is the
critical point of the map fi, then Φp(x) < x, for all x ∈ (0, 1)
if Φp(cΦp

) < cΦp
, where cΦp

∈ CΦp
.

Now, if |Φp(x)| > x for some x ∈ (0, 1), the composition
operator Φp has more than one fixed point. We know from
Coppel’s Theorem [1] that every orbit converges to a fixed
point if and only if the equation Φp ◦ Φp(x) = x has
no solutions with the exception of the fixed points of Φp.

Fig. 7. Composition of three generalized logistic maps. The composition map
Φ3 is represented by the solid curve and the individual maps are represented
by the dashed curves. The values of parameters are k = 2, µ0 = 6.5 (f0),
µ1 = 5.5 (f1) and µ2 = 6 (f2).

It is not possible, in general, to say much concerning the
number of fixed points of Φp since we have many scenarios.
However, if all maps fi have a threshold fixed point Ai

and we let Am = min{A0,A1, . . . ,Ap−1} and AM =
max{A0,A1, . . . ,Ap−1}, then one can show that the minimal
positive fixed point of Φp, AΦp , lies between Am and AM

and is, in fact, an unstable fixed point. Under this scenario, the
immediate basin of attraction of the origin is ∪i≥1Ji where
Ji ⊂ I and

Φp(Ji) ⊂ [0,AΦp
).

See Fig. 7 for an example of this scenario.
We remark that each fixed point of the composition map

Φp, with the exception of x∗ = 0, generates a periodic orbit
in equation (2). More precisely, if x∗ is a non-trivial fixed
point of Φp, then

C = {x0 = x∗, x1 = f0(x0), x2 = f1(x1), . . . , xp−1 = fp−2(xp−2)}

is a periodic cycle of equation (2), which is locally asymptot-
ically stable if

|Φ′p(x∗)| =

∣∣∣∣∣
p−1∏
i=0

f ′i(xi)

∣∣∣∣∣ < 1.

Notice that, due the periodicity of the maps fi, we have xp =
fp−1(xp−1) = x0, xp+1 = x1, and so on.

From the dynamical point of view, it is interesting to know
the region where the stability of the fixed points occurs. Since
we are not able to find explicitly the fixed points of the
composition map Φp for general values of the parameters ki
and µi, i = 0, 1, . . . , p−1, we will particularize and study the
cases where this is possible as are the cases when p = 2, 3, 4
and k = 2, i.e., we will study the dynamics of the system
when the sequence of maps is 2−periodic and given by

fn mod(2)(x) = µn mod(2) x
k(1− x), k = 2, 3, 4.



A3
R

A1

A2
S

O

0 2 4 6 8 10
0

2

4

6

8

10

Μ0

Μ
1

Fig. 8. Region of local stability, in the parameter space µ0Oµ1 where the
fixed points of f1 ◦ f0 are locally asymptotically stable and the maps are
given by fi(x) = µix

2(1 − x), i = 0, 2.

Let us start with the case k = 2. Following the techniques
employed in [17], one can find the region of local stability
of the fixed points of the composition map Φ2 = f1 ◦ f0 by
calculating the boundary where the absolute value of Φ′2(x∗)
is equal to one. This happens when f1(f0(x∗)) = x∗

f ′1(f0(x∗))f ′0(x∗) = 1
(13)

and  f1(f0(x∗)) = x∗

f ′1(f0(x∗))f ′0(x∗) = −1
. (14)

Since the computations are long we will omit it here. Now,
drawing implicitly, in the parameter space, the curves where
the two previous equations are satisfied, we find the region
where the stability of the fixed points of Φ2 occurs. The
stability regions are depicted, in the parameter space µ0Oµ1,
in Fig. 8.

If the parameters µ0 and µ1 belong to the region O, then
the origin is a fixed point globally asymptotically stable.
Once the parameters cross the dashed curve, from Region
O to Region S, a bifurcation occurs, known as saddle-node
bifurcation. The fixed point x∗ = 0 becomes unstable and
a new locally stable fixed point of Φ2 is born. This fixed
point is, in fact, a 2−periodic cycle of the 2−periodic equation
(2). Now if the parameters µ0 and µ1 cross the dashed curve
from Region S to Region R, a saddle-node bifurcation occurs.
The 2−periodic cycle becomes unstable and a new locally
asymptotically stable 2−periodic cycle is born.

For a general framework of bifurcation in one-dimensional
periodic difference equations, we refer the work of Elaydi,
Luı́s, and Oliveira in [12].

Now, following the same techniques as before, we are able
to find the regions of local stability of fixed points when k = 3
and k = 4. These regions are represented in Fig. 9. As we can
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Fig. 9. Regions of local stability, in the parameter space, of the 2−periodic
equation when k = 3 (left) and k = 4 (right).

observe, they are similar to the case k = 2 and the conclusions
follow in the same fashion.

V. CONCLUSION

In this paper, we have presented a survey in local stability of
discrete-time dynamical systems. The most important results
concerning stability of hyperbolic and non-hyperbolic fixed
points are addressed. Examples in both, autonomous and non-
autonomous periodic models, are deeply studied. Some of
these examples are widely used in the literature such as the
Beverton-Holt model, the logistic model and the Ricker model.
However, the examples with Allee effect are not so well known
and studied. We should mention that, in the past two decades,
the Allee effect was deeply studied in discrete dynamical
systems.

Finally, this survey aims to be as a pedagogical instrument
in stability analysis of discrete dynamical systems.
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